
1/41

Controller Synthesis
for

Hyperproperties

HYPER 2021 October 18, 2021

Borzoo Bonakdarpour

2/41

Bernd Finkbeiner

This is joint work with

I Borzoo Bonakdarpour, Bernd Finkbeiner, Controller Synthesis for Hyperproperties The
33rd IEEE International Symposium on Computer Security Foundations (CSF), 2020

3/41

1. Motivation

4/41

Motivation

I The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

A B

T

4/41

Motivation

I The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

I The recipient of the message obtains an
NRO evidence.

A B

T

4/41

Motivation

I The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

I The recipient of the message obtains an
NRO evidence.

I The sender of the message obtains an
NRR evidence.

A B

T

4/41

Motivation

I The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

I The recipient of the message obtains an
NRO evidence.

I The sender of the message obtains an
NRR evidence.

A B

T

I The protocol is effective if it is possible to successfully transmit the
message to the recipient and the evidence to both parties.

4/41

Motivation

I The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

I The recipient of the message obtains an
NRO evidence.

I The sender of the message obtains an
NRR evidence.

A B

T

I The protocol is fair if it is impossible for one party to obtain the
evidence without the other party also receiving the evidence.

I The protocol is effective if it is possible to successfully transmit the
message to the recipient and the evidence to both parties.

5/41

Motivation

Actions of participants

5/41

Motivation

Actions of participants

ActA = {A→B:m,A→T :m,A→B:NRO , A→T :NRO , A:skip}

ActB = {B→A:NRR, B→T :NRR, B:skip}

ActT = {T→A:NRR, T→B:NRO , T→B:m,T :skip}

5/41

Motivation

Actions of participants

ActA = {A→B:m,A→T :m,A→B:NRO , A→T :NRO , A:skip}

ActB = {B→A:NRR, B→T :NRR, B:skip}

ActT = {T→A:NRR, T→B:NRO , T→B:m,T :skip}

Controllable transition

Uncontrollable transition

A

TT T T

5/41

Motivation

Actions of participants

ActA = {A→B:m,A→T :m,A→B:NRO , A→T :NRO , A:skip}

ActB = {B→A:NRR, B→T :NRR, B:skip}

ActT = {T→A:NRR, T→B:NRO , T→B:m,T :skip}

Controllable transition

Uncontrollable transition

A

TT T T

B B B B B B B B

5/41

Motivation

Actions of participants

ActA = {A→B:m,A→T :m,A→B:NRO , A→T :NRO , A:skip}

ActB = {B→A:NRR, B→T :NRR, B:skip}

ActT = {T→A:NRR, T→B:NRO , T→B:m,T :skip}

Controllable transition

Uncontrollable transition

A

TT T T

B B B B B B B B

T T T TT T T T

5/41

Motivation

Actions of participants

How can we synthesize the behavior of T ,
ensuring arbitrary behavior for A and B?

ActA = {A→B:m,A→T :m,A→B:NRO , A→T :NRO , A:skip}

ActB = {B→A:NRR, B→T :NRR, B:skip}

ActT = {T→A:NRR, T→B:NRO , T→B:m,T :skip}

Controllable transition

Uncontrollable transition

A

TT T T

B B B B B B B B

T T T TT T T T

6/41

Motivation

I Specification of the protocol:

I there should exist a sequence of actions, such that the message
m, the NRR, and the NRO get received, such that

I for all similar executions of A and B, it must still hold that the
NRR gets received if and only if the NRO gets received.

6/41

Motivation

I Specification of the protocol:

I there should exist a sequence of actions, such that the message
m, the NRR, and the NRO get received, such that

I for all similar executions of A and B, it must still hold that the
NRR gets received if and only if the NRO gets received.

I This is a hyperproperty, i.e., a set of sets of traces.

7/41

Motivation

Prominent security breaches related to information flow
security (hyperproperties)

7/41

Motivation

Prominent security breaches related to information flow
security (hyperproperties)

7/41

Motivation

Prominent security breaches related to information flow
security (hyperproperties)

7/41

Motivation

Prominent security breaches related to information flow
security (hyperproperties)

8/41

Informal Problem Statement

8/41

Informal Problem Statement

(Controllable)
Plant P

8/41

Informal Problem Statement

(Controllable)

Uncontrollable
transitions u

Plant P

8/41

Informal Problem Statement

(Controllable)

Uncontrollable

Hyperproperty ϕ

transitions u

Plant P

8/41

Informal Problem Statement

(Controllable)

Uncontrollable

Hyperproperty ϕ

transitions u

Plant P
Controller

Synthesis

Algorithm

8/41

Informal Problem Statement

(Controllable)

Uncontrollable
Plant P ′

Hyperproperty ϕ

transitions u

Plant P
Controller

Synthesis

Algorithm s.t.
P ′∪u |= ϕ

9/41

2. HyperLTL

M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, C. Sánchez:
Temporal Logics for Hyperproperties. POST 2014: 265-284

10/41

Preliminaries – HyperLTL

Syntax

Semantics

10/41

Preliminaries – HyperLTL

α ::= ∃π.α
∣∣ ∀π.α ∣∣ ϕ

Syntax

Semantics

10/41

Preliminaries – HyperLTL

α ::= ∃π.α
∣∣ ∀π.α ∣∣ ϕ

ϕ ::= aπ
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ ∣∣ ϕ
∣∣ ϕ U ϕ

Syntax

Semantics

10/41

Preliminaries – HyperLTL

α ::= ∃π.α
∣∣ ∀π.α ∣∣ ϕ

ϕ ::= aπ
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ ∣∣ ϕ
∣∣ ϕ U ϕ

Syntax

Semantics

(W,Π) |= ∃π.α iff for some σ ∈W , (W,Π[π 7→ (σ, 0)]) |= α
(W,Π) |= ∀π.α iff for all σ ∈W , (W,Π[π 7→ (σ, 0)]) |= α

10/41

Preliminaries – HyperLTL

α ::= ∃π.α
∣∣ ∀π.α ∣∣ ϕ

ϕ ::= aπ
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ ∣∣ ϕ
∣∣ ϕ U ϕ

Syntax

Semantics

(W,Π) |= ϕ iff Π |= ϕ
Π |= aπ iff a ∈ σ(p), where (σ, p) = Π(π)
Π |= ϕ1 ∨ ϕ2 iff Π |= ϕ1 or Π |= ϕ2

Π |= ¬ϕ iff Π 6|= ϕ

(W,Π) |= ∃π.α iff for some σ ∈W , (W,Π[π 7→ (σ, 0)]) |= α
(W,Π) |= ∀π.α iff for all σ ∈W , (W,Π[π 7→ (σ, 0)]) |= α

10/41

Preliminaries – HyperLTL

α ::= ∃π.α
∣∣ ∀π.α ∣∣ ϕ

ϕ ::= aπ
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ ∣∣ ϕ
∣∣ ϕ U ϕ

Π |= ϕ iff (Π + 1) |= ϕ
Π |= ϕ1 U ϕ2 iff for some j ≥ 0 (Π + j) |= ϕ2

and for all 0 ≤ i < j,(Π + i) |= ϕ1

Syntax

Semantics

(W,Π) |= ϕ iff Π |= ϕ
Π |= aπ iff a ∈ σ(p), where (σ, p) = Π(π)
Π |= ϕ1 ∨ ϕ2 iff Π |= ϕ1 or Π |= ϕ2

Π |= ¬ϕ iff Π 6|= ϕ

(W,Π) |= ∃π.α iff for some σ ∈W , (W,Π[π 7→ (σ, 0)]) |= α
(W,Π) |= ∀π.α iff for all σ ∈W , (W,Π[π 7→ (σ, 0)]) |= α

11/41

Preliminaries – HyperLTL

11/41

Preliminaries – HyperLTL

I The meaning of HyperLTL formula

ϕ = ∀π.∀π′. (aπ ↔ aπ′)

is that any pair of traces should agree on the value of a at every
position.

11/41

Preliminaries – HyperLTL

I The meaning of HyperLTL formula

ϕ = ∀π.∀π′. (aπ ↔ aπ′)

is that any pair of traces should agree on the value of a at every
position.

a a a

a a a

11/41

Preliminaries – HyperLTL

I The meaning of HyperLTL formula

ϕ = ∀π.∀π′. (aπ ↔ aπ′)

is that any pair of traces should agree on the value of a at every
position.

aa

a a

a a a

a a a

11/41

Preliminaries – HyperLTL

I The meaning of HyperLTL formula

ϕ = ∀π.∀π′. (aπ ↔ aπ′)

is that any pair of traces should agree on the value of a at every
position.

aa

a a

a a a

a a a

12/41

Preliminaries – HyperLTL

12/41

Preliminaries – HyperLTL

I Observational determinism [Zdancewich, Meyers 2003]:

∀π.∀π′.(iπ ↔ iπ′) → (oπ ↔ oπ′)

12/41

Preliminaries – HyperLTL

I Observational determinism [Zdancewich, Meyers 2003]:

∀π.∀π′.(iπ ↔ iπ′) → (oπ ↔ oπ′)

I Non-inference [McLean 1994]

∀π.∃π′. (hiπ) ∧ (liπ ↔ liπ′ ∧ loπ ↔ loπ′)

13/41

Preliminaries – HyperLTL

13/41

Preliminaries – HyperLTL

I Non-repudiation:

ϕ = ∃π.∀π′. (mπ) ∧ (NRRπ) ∧ (NROπ)
(effectiveness)

∧
(

(
∧
a∈ActA

aπ ⇔ aπ′)⇒
(
(NRRπ′)⇔ (NROπ′)

))
(fairness for A)

∧
(

(
∧
a∈ActB

aπ ⇔ aπ′)⇒
(
(NRRπ′)⇔ (NROπ′)

))
(fairness for B)

14/41

Preliminaries – Plants

I A plant is a tuple P = 〈S, sinit , c, u, L〉, where

I S is a finite set of states;
I sinit ∈ S is the initial state;
I c, u ⊆ S × S are respectively sets of of controllable and

uncontrollable transitions, where c ∩ u = {}, and
I L : S → Σ is a labeling function on the states of P.

{a}
sinit

{a}
s1

{b}
s2

{b}
s3

15/41

3. Problem Statement

16/41

Formal Problem Statement

Plant P ′ = 〈S′, s′init , c′, u′, L′〉

Hyperproperty ϕ

Plant P = 〈S, sinit , c, u, L〉

Controller

Synthesis

Algorithm

16/41

Formal Problem Statement

Plant P ′ = 〈S′, s′init , c′, u′, L′〉

Hyperproperty ϕ

Plant P = 〈S, sinit , c, u, L〉

Controller

Synthesis

Algorithm
s.t.

I S′ = S
I s′init = sinit
I c′ ⊆ c
I u′ = u
I L′ = L
I P ′ |= ϕ

16/41

Formal Problem Statement

Plant P ′ = 〈S′, s′init , c′, u′, L′〉

Hyperproperty ϕ

Plant P = 〈S, sinit , c, u, L〉

Controller

Synthesis

Algorithm
s.t.

I S′ = S
I s′init = sinit
I c′ ⊆ c
I u′ = u
I L′ = L
I P ′ |= ϕ

16/41

Formal Problem Statement

Plant P ′ = 〈S′, s′init , c′, u′, L′〉

Hyperproperty ϕ

Plant P = 〈S, sinit , c, u, L〉

Controller

Synthesis

Algorithm
s.t.

I S′ = S
I s′init = sinit
I c′ ⊆ c
I u′ = u
I L′ = L
I P ′ |= ϕ

∀∀ (observational determinism)

∀∃ (non-inference)

∃∀ (non-repudiation)
∀∀∃ (generalized non-interference)

16/41

Formal Problem Statement

Plant P ′ = 〈S′, s′init , c′, u′, L′〉

Hyperproperty ϕ

Plant P = 〈S, sinit , c, u, L〉

Controller

Synthesis

Algorithm
s.t.

I S′ = S
I s′init = sinit
I c′ ⊆ c
I u′ = u
I L′ = L
I P ′ |= ϕ

∀∀ (observational determinism)

∀∃ (non-inference)

∃∀ (non-repudiation)
∀∀∃ (generalized non-interference)

16/41

Formal Problem Statement

Plant P ′ = 〈S′, s′init , c′, u′, L′〉

Hyperproperty ϕ

Plant P = 〈S, sinit , c, u, L〉

Controller

Synthesis

Algorithm
s.t.

I S′ = S
I s′init = sinit
I c′ ⊆ c
I u′ = u
I L′ = L
I P ′ |= ϕ

∀∀ (observational determinism)

∀∃ (non-inference)

∃∀ (non-repudiation)
∀∀∃ (generalized non-interference)

tree acyclic general

16/41

Formal Problem Statement

Plant P ′ = 〈S′, s′init , c′, u′, L′〉

Hyperproperty ϕ

Plant P = 〈S, sinit , c, u, L〉

Controller

Synthesis

Algorithm
s.t.

I S′ = S
I s′init = sinit
I c′ ⊆ c
I u′ = u
I L′ = L
I P ′ |= ϕ

∀∀ (observational determinism)

∀∃ (non-inference)

∃∀ (non-repudiation)
∀∀∃ (generalized non-interference)

tree acyclic general

Session-based and terminating protocols

17/41

Summary of Results

HyperLTL
fragment

Tree Acyclic General

E∗
L-complete

(Theorem 1)

NL-complete
(Theorem 5)

NL-complete
(Theorem 9)

E∗A Σp
2 PSPACE-complete

(Theorem 11)

AE∗
P-complete

(Theorem 2)
Σp

2-complete
(Theorem 8)

AA+

NP-complete
(Corollary 1)

NP-complete
(Theorem 6)

NP-complete
(Theorem 10)

(E∗A∗)k,
k ≥ 2

Σp
k-complete

(Theorem 8)
(k−1)-EXPSPACE-

complete
(Theorem 11)

(A∗E∗)k,
k ≥ 1

Σp
k+1-complete
(Theorem 8)

(A∗E∗)∗
PSPACE

(Corollary 3)
NONELEMENTARY
(Corollary 4)

17/41

Summary of Results

HyperLTL
fragment

Tree Acyclic General

E∗
L-complete

(Theorem 1)

NL-complete
(Theorem 5)

NL-complete
(Theorem 9)

E∗A Σp
2 PSPACE-complete

(Theorem 11)

AE∗
P-complete

(Theorem 2)
Σp

2-complete
(Theorem 8)

AA+

NP-complete
(Corollary 1)

NP-complete
(Theorem 6)

NP-complete
(Theorem 10)

(E∗A∗)k,
k ≥ 2

Σp
k-complete

(Theorem 8)
(k−1)-EXPSPACE-

complete
(Theorem 11)

(A∗E∗)k,
k ≥ 1

Σp
k+1-complete
(Theorem 8)

(A∗E∗)∗
PSPACE

(Corollary 3)
NONELEMENTARY
(Corollary 4)

17/41

Summary of Results

HyperLTL
fragment

Tree Acyclic General

E∗
L-complete

(Theorem 1)

NL-complete
(Theorem 5)

NL-complete
(Theorem 9)

E∗A Σp
2 PSPACE-complete

(Theorem 11)

AE∗
P-complete

(Theorem 2)
Σp

2-complete
(Theorem 8)

AA+

NP-complete
(Corollary 1)

NP-complete
(Theorem 6)

NP-complete
(Theorem 10)

(E∗A∗)k,
k ≥ 2

Σp
k-complete

(Theorem 8)
(k−1)-EXPSPACE-

complete
(Theorem 11)

(A∗E∗)k,
k ≥ 1

Σp
k+1-complete
(Theorem 8)

(A∗E∗)∗
PSPACE

(Corollary 3)
NONELEMENTARY
(Corollary 4)

17/41

Summary of Results

HyperLTL
fragment

Tree Acyclic General

E∗
L-complete

(Theorem 1)

NL-complete
(Theorem 5)

NL-complete
(Theorem 9)

E∗A Σp
2 PSPACE-complete

(Theorem 11)

AE∗
P-complete

(Theorem 2)
Σp

2-complete
(Theorem 8)

AA+

NP-complete
(Corollary 1)

NP-complete
(Theorem 6)

NP-complete
(Theorem 10)

(E∗A∗)k,
k ≥ 2

Σp
k-complete

(Theorem 8)
(k−1)-EXPSPACE-

complete
(Theorem 11)

(A∗E∗)k,
k ≥ 1

Σp
k+1-complete
(Theorem 8)

(A∗E∗)∗
PSPACE

(Corollary 3)
NONELEMENTARY
(Corollary 4)

18/41

4. Controller Synthesis

for Trees

19/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

19/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

19/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Upper bound

19/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Upper bound

{a}

{a}

{b}

{c}

{a}

{c}

{b} {c}

{a}

{a}

|paths| ≤ |states|
trace length ≤ |states|

19/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Upper bound

{a}

{a}

{b}

{c}

{a}

{c}

{b} {c}

{a}

{a}

|paths| ≤ |states|
trace length ≤ |states|

We only need one path per ∃
1. Find path assignment:
I go through all path

assignments for ∃∗ using
logarithmic counters

I Go through all path
assignments for ∀∗ to one
of the ∃-paths

19/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

2. Verify correctness:

I check each temporal
operator with a
logarithmic counter

Upper bound

{a}

{a}

{b}

{c}

{a}

{c}

{b} {c}

{a}

{a}

|paths| ≤ |states|
trace length ≤ |states|

We only need one path per ∃
1. Find path assignment:
I go through all path

assignments for ∃∗ using
logarithmic counters

I Go through all path
assignments for ∀∗ to one
of the ∃-paths

20/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

20/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

20/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Upper bound (∀π1.∃π2.ψ)

20/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Upper bound (∀π1.∃π2.ψ)

1. We begin by marking all leaves and
proceed in several rounds, in which at least
one mark is removed (linear rounds).

20/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Upper bound (∀π1.∃π2.ψ)

1. We begin by marking all leaves and
proceed in several rounds, in which at least
one mark is removed (linear rounds).

2. In each round, we go through all marked
leaves v1 and instantiate π1 with the trace
leading to v1. We then again go through all
marked leaves v2 and instantiate π2 with the
trace leading to v2, and check ψ on the pair
of traces (linear time).

20/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Upper bound (∀π1.∃π2.ψ)

1. We begin by marking all leaves and
proceed in several rounds, in which at least
one mark is removed (linear rounds).

2. In each round, we go through all marked
leaves v1 and instantiate π1 with the trace
leading to v1. We then again go through all
marked leaves v2 and instantiate π2 with the
trace leading to v2, and check ψ on the pair
of traces (linear time).

3. If successful for some instantiation of π2,
we leave v1 marked, otherwise we remove
the mark. If no mark was removed by the
end of the round, we terminate.

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Lower bound

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the horn SAT problemLower bound

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the horn SAT problemLower bound
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x1)

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the horn SAT problemLower bound
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x1)

= (¬x1 ∨ ¬x2 ∨ f) ∧ (¬x3 ∨ ¬f ∨ x4) ∧
(¬x2 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x1 ∨ ⊥)

X = {⊥, x1, x2, x3, x4, f,>}

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the horn SAT problemLower bound
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x1)

= (¬x1 ∨ ¬x2 ∨ f) ∧ (¬x3 ∨ ¬f ∨ x4) ∧
(¬x2 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x1 ∨ ⊥)

X = {⊥, x1, x2, x3, x4, f,>}

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the horn SAT problemLower bound
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x1)

= (¬x1 ∨ ¬x2 ∨ f) ∧ (¬x3 ∨ ¬f ∨ x4) ∧
(¬x2 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x1 ∨ ⊥)

X = {⊥, x1, x2, x3, x4, f,>}

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the horn SAT problemLower bound
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x1)

= (¬x1 ∨ ¬x2 ∨ f) ∧ (¬x3 ∨ ¬f ∨ x4) ∧
(¬x2 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x1 ∨ ⊥)

x4f ⊥

X = {⊥, x1, x2, x3, x4, f,>}

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the horn SAT problemLower bound
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x1)

{neg2}

= (¬x1 ∨ ¬x2 ∨ f) ∧ (¬x3 ∨ ¬f ∨ x4) ∧
(¬x2 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x1 ∨ ⊥)

x4f ⊥

{neg1, pos}

{pos}

X = {⊥, x1, x2, x3, x4, f,>}

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the horn SAT problemLower bound
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x1)

{neg2}

= (¬x1 ∨ ¬x2 ∨ f) ∧ (¬x3 ∨ ¬f ∨ x4) ∧
(¬x2 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x1 ∨ ⊥)

x4f ⊥

{neg1, pos}

{pos}

{neg1}

{neg1,neg2}

{pos}{neg2, pos}

{neg1,neg2}

{neg1,neg2}

X = {⊥, x1, x2, x3, x4, f,>}

21/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the horn SAT problemLower bound
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ x4) ∧ (¬x1)

{neg2}

= (¬x1 ∨ ¬x2 ∨ f) ∧ (¬x3 ∨ ¬f ∨ x4) ∧
(¬x2 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x1 ∨ ⊥)

x4f ⊥

{neg1, pos}

{pos}

ϕmap = ∀π1.∃π2. (¬posπ1
) ∧ (¬posπ2

) ∧(
(neg1π1

↔ posπ2
) ∨ (neg2π1

↔ posπ2
)
)

{neg1}

{neg1,neg2}

{pos}{neg2, pos}

{neg1,neg2}

{neg1,neg2}

X = {⊥, x1, x2, x3, x4, f,>}

22/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

22/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

22/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Upper bound

1. Guess a solution to the synthesis problem
2. Verify the correctness of the solution

(using logarithmic counters for path
assignments and temporal operators as
before)

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Lower bound

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problemLower bound

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problemLower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problemLower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problemLower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

y1

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problemLower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

y1

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problemLower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

y1

{neg}

{neg}

{pos}

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problemLower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

y1 y2

{neg}

{neg}

{pos}

{pos}

{pos}

{neg}

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problem

ϕmap = ∀π1.∀π2.
(
¬posπ1

∨ ¬negπ2

)

Lower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

y1 y2

{neg}

{neg}

{pos}

{pos}

{pos}

{neg}

23/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problem

ϕmap = ∀π1.∀π2.
(
¬posπ1

∨ ¬negπ2

)

Lower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

y1 y2

{neg}

{neg}

{pos}

{pos}

{pos}

{neg}

x3 = f , x4 = f

x1 = t, x2 = f ,

24/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problem

ϕmap = ∀π1.∀π2.
(
¬posπ1

∨ ¬negπ2

)

Lower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

y1 y2

x3 = f , x4 = f

x1 = t, x2 = f ,

{neg}

{pos}

{pos}

{pos}

{neg}

25/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problem

ϕmap = ∀π1.∀π2.
(
¬posπ1

∨ ¬negπ2

)

Lower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

y1 y2

x3 = f , x4 = f

x1 = t, x2 = f ,

{neg}

{pos}

{pos}

{neg}

26/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree

E∗
L-complete

(Theorem 1)

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

Reduction from the 3SAT problem

ϕmap = ∀π1.∀π2.
(
¬posπ1

∨ ¬negπ2

)

Lower bound

(¬x1∨¬x2∨x3) ∧ (x1∨x2∨¬x4)

y1 y2

x3 = f , x4 = f

x1 = t, x2 = f ,

{neg}

{pos}

{neg}

27/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree
(Controller
Synthesis)

Tree [BF18]
(Verification)

E∗
L-complete

(Theorem 1)

L-complete

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

I (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, The complexity of monitoring
hyperproperties. CSF 2018.

27/41

Controller Synthesis for Trees

HyperLTL
fragment

Tree
(Controller
Synthesis)

Tree [BF18]
(Verification)

E∗
L-complete

(Theorem 1)

L-complete

E∗A

AE∗
P-complete

(Theorem 2)

AA+

NP-complete
(Corollary 1)

(E∗A∗)k,
k ≥ 2

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗

I (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, The complexity of monitoring
hyperproperties. CSF 2018.

28/41

4. Controller Synthesis
for

Acyclic Graphs

29/41

Controller Synthesis for Acyclic Graphs

HyperLTL
fragment

Acyclic

E∗
NL-complete
(Theorem 5)

E∗A Σp
2

AE∗
Σp

2-complete
(Theorem 8)

AA+ NP-complete
(Theorem 6)

(E∗A∗)k,
k ≥ 2

Σp
k-complete

(Theorem 8)

(A∗E∗)k,
k ≥ 1

Σp
k+1-complete
(Theorem 8)

(A∗E∗)∗
PSPACE

(Corollary 3)

Upper bound

29/41

Controller Synthesis for Acyclic Graphs

HyperLTL
fragment

Acyclic

E∗
NL-complete
(Theorem 5)

E∗A Σp
2

AE∗
Σp

2-complete
(Theorem 8)

AA+ NP-complete
(Theorem 6)

(E∗A∗)k,
k ≥ 2

Σp
k-complete

(Theorem 8)

(A∗E∗)k,
k ≥ 1

Σp
k+1-complete
(Theorem 8)

(A∗E∗)∗
PSPACE

(Corollary 3)

Upper bound

1. Guess a solution to synthesis +
path assignment for leading ∃∗

2. Verify the remaining formula
(model checking is in Πpk)

30/41

Controller Synthesis for Acyclic Graphs

HyperLTL
fragment

Acyclic
(Controller
Synthesis)

Acyclic
[BF18]

(Verification)

E∗
NL-complete
(Theorem 5)

NL-completeE∗A

AA+ NP-complete
(Theorem 6)

AE∗
Σp

2-complete
(Theorem 8)

Πp2-complete

(E∗A∗)k,
k ≥ 2

Σp
k-complete

(Theorem 8)
Σp
k-complete

(A∗E∗)k,
k ≥ 1

Σp
k+1-complete
(Theorem 8)

Πpk-complete

(A∗E∗)∗
PSPACE

(Corollary 3)
PSPACE

30/41

Controller Synthesis for Acyclic Graphs

HyperLTL
fragment

Acyclic
(Controller
Synthesis)

Acyclic
[BF18]

(Verification)

E∗
NL-complete
(Theorem 5)

NL-completeE∗A

AA+ NP-complete
(Theorem 6)

AE∗
Σp

2-complete
(Theorem 8)

Πp2-complete

(E∗A∗)k,
k ≥ 2

Σp
k-complete

(Theorem 8)
Σp
k-complete

(A∗E∗)k,
k ≥ 1

Σp
k+1-complete
(Theorem 8)

Πpk-complete

(A∗E∗)∗
PSPACE

(Corollary 3)
PSPACE

I (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, The complexity of monitoring
hyperproperties. CSF 2018.

31/41

5. Controller Synthesis
for

General Graphs

32/41

Controller Synthesis for General Graphs

HyperLTL
fragment

General

E∗
NL-complete
(Theorem 9)

E∗A
PSPACE-complete

(Theorem 11)

AE∗

AA+ NP-complete
(Theorem 10)

(E∗A∗)k,
k ≥ 2

(k−1)-EXPSPACE-
complete

(Theorem 11)

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗
NONELEMENTARY
(Corollary 4)

Upper bound

32/41

Controller Synthesis for General Graphs

HyperLTL
fragment

General

E∗
NL-complete
(Theorem 9)

E∗A
PSPACE-complete

(Theorem 11)

AE∗

AA+ NP-complete
(Theorem 10)

(E∗A∗)k,
k ≥ 2

(k−1)-EXPSPACE-
complete

(Theorem 11)

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗
NONELEMENTARY
(Corollary 4)

Upper bound

Synthesis is dominated by
verification
1. Guess a solution to the
synthesis problem

2. Verify

33/41

Controller Synthesis for General Graphs

HyperLTL
fragment

General
(Controller
Synthesis)

General
[BF18]

(Verification)

E∗
NL-complete
(Theorem 9)

NL-complete

AA+ NP-complete
(Theorem 10)

E∗A
PSPACE-complete

(Theorem 11)
PSPACE-complete

AE∗

(E∗A∗)k,
k ≥ 2

(k−1)-EXPSPACE-
complete

(Theorem 11)
(k−1)-EXPSPACE-complete

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗
NONELEMENTARY
(Corollary 4)

NONELEMENTARY

33/41

Controller Synthesis for General Graphs

HyperLTL
fragment

General
(Controller
Synthesis)

General
[BF18]

(Verification)

E∗
NL-complete
(Theorem 9)

NL-complete

AA+ NP-complete
(Theorem 10)

E∗A
PSPACE-complete

(Theorem 11)
PSPACE-complete

AE∗

(E∗A∗)k,
k ≥ 2

(k−1)-EXPSPACE-
complete

(Theorem 11)
(k−1)-EXPSPACE-complete

(A∗E∗)k,
k ≥ 1

(A∗E∗)∗
NONELEMENTARY
(Corollary 4)

NONELEMENTARY

34/41

5. The Tool HyperQube

I Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour: Bounded Model Checking for
Hyperproperties. TACAS 2021: 94-112

I Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sánchez: HyperQube: A QBF-Based
Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021)

35/41

HyperQube

I HyperQube is a push-button QBF-based bounded model checker for
hyperproperties.

I Unlike the existing similar tools, the QBF-based technique allows
HyperQube to seamlessly deal with quantifier alternations.

(user inputs) w/ pyNuSMV genqbf QuAbs

NuSMV
model(s)

HyperLTL
Formula

Model(s)
Parser

Formula
Translator

Encode initial
conditions

Encode transition
relation

Unroll model(s)
with formula

QBF solver

Satisfaction
and

Witness

Dissatisfaction
and

Counterexample

I Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour: Bounded Model Checking for
Hyperproperties. TACAS 2021: 94-112

I Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sánchez: HyperQube: A QBF-Based
Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021)

36/41

HyperQube Performance

Symmetry

Linearizability

Information-flow

Security

Testing
Mutation

in HW

37/41

Synthesis using HyperQube

I Adversarial multi-agent
path planning

38/41

Controller Synthesis using HyperQube
I Non-repudiation:

ϕ = ∃π.∀π′. (mπ) ∧ (NRRπ) ∧ (NROπ)
(effectiveness)

∧
(

(
∧
a∈ActA

aπ ⇔ aπ′)⇒
(
(NRRπ′)⇔ (NROπ′)

))
(fairness for A)

∧
(

(
∧
a∈ActB

aπ ⇔ aπ′)⇒
(
(NRRπ′)⇔ (NROπ′)

))
(fairness for B)

38/41

Controller Synthesis using HyperQube

I We ran HyperQube iteratively, where each round finds a new witness
to the existential quantifier in formula until there is no more such
trace.

I We synthesized the correct non-repudiation protocol in only 0.8s.

I Non-repudiation:

ϕ = ∃π.∀π′. (mπ) ∧ (NRRπ) ∧ (NROπ)
(effectiveness)

∧
(

(
∧
a∈ActA

aπ ⇔ aπ′)⇒
(
(NRRπ′)⇔ (NROπ′)

))
(fairness for A)

∧
(

(
∧
a∈ActB

aπ ⇔ aπ′)⇒
(
(NRRπ′)⇔ (NROπ′)

))
(fairness for B)

38/41

Controller Synthesis using HyperQube

(1) skip until A:m→T ; (2) skip until A:NRO→T ; (3) T→B:m;
(4) skip until B→T :NRR; (5) T→B:NRO ; (6) T→A:NRR;

I We ran HyperQube iteratively, where each round finds a new witness
to the existential quantifier in formula until there is no more such
trace.

I We synthesized the correct non-repudiation protocol in only 0.8s.

I Non-repudiation:

ϕ = ∃π.∀π′. (mπ) ∧ (NRRπ) ∧ (NROπ)
(effectiveness)

∧
(

(
∧
a∈ActA

aπ ⇔ aπ′)⇒
(
(NRRπ′)⇔ (NROπ′)

))
(fairness for A)

∧
(

(
∧
a∈ActB

aπ ⇔ aπ′)⇒
(
(NRRπ′)⇔ (NROπ′)

))
(fairness for B)

39/41

6. Conclusion

40/41

Conclusion

I Summary

I Controller synthesis is a promising approach to synthesize secure
systems

I Similar complexity to verification
I Potential for scalable algorithms and tools for relevant fragments

I Future work
I Hyperlogics beyond HyperLTL (e.g., HyperCTL*, FO/SO

hyperlogics)
I Controller synthesis beyond finite state spaces
I Syntax-guided synthesis for hyperproperties

41/41

Thanks!

	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}

