Controller Synthesis for Hyperproperties

Borzoo Bonakdarpour

MICHIGAN STATE UNIVERSITY

This is joint work with

Bernd Finkbeiner

Borzoo Bonakdarpour, Bernd Finkbeiner, Controller Synthesis for Hyperproperties The 33rd IEEE International Symposium on Computer Security Foundations (CSF), 2020

The purpose of a non-repudiation protocol is to allow two parties A and B to exchange messages through a trusted third party T without any party being able to deny having participated in the exchange.

The purpose of a non-repudiation protocol is to allow two parties A and B to exchange messages through a trusted third party T without any party being able to deny having participated in the exchange.

The recipient of the message obtains an NRO evidence.

The purpose of a non-repudiation protocol is to allow two parties A and B to exchange messages through a trusted third party T without any party being able to deny having participated in the exchange.

- The recipient of the message obtains an NRO evidence.
- The sender of the message obtains an NRR evidence.

The purpose of a non-repudiation protocol is to allow two parties A and B to exchange messages through a trusted third party T without any party being able to deny having participated in the exchange.

- The recipient of the message obtains an NRO evidence.
- The sender of the message obtains an NRR evidence.

The protocol is *effective* if it is possible to successfully transmit the message to the recipient and the evidence to both parties.

The purpose of a non-repudiation protocol is to allow two parties A and B to exchange messages through a trusted third party T without any party being able to deny having participated in the exchange.

- The recipient of the message obtains an NRO evidence.
- The sender of the message obtains an NRR evidence.

- The protocol is *effective* if it is possible to successfully transmit the message to the recipient and the evidence to both parties.
- The protocol is *fair* if it is *impossible* for one party to obtain the evidence without the other party *also* receiving the evidence.

Actions of participants

Actions of participants

 $Act_{A} = \{A \rightarrow B: m, A \rightarrow T: m, A \rightarrow B: NRO, A \rightarrow T: NRO, A: skip\}$

 $Act_B = \{B \rightarrow A: NRR, B \rightarrow T: NRR, B: skip\}$

 $Act_T = \{T \rightarrow A: NRR, T \rightarrow B: NRO, T \rightarrow B:m, T: skip\}$

Actions of participants

 $Act_{A} = \{A \rightarrow B: m, A \rightarrow T: m, A \rightarrow B: NRO, A \rightarrow T: NRO, A: skip\}$

 $Act_B = \{B \rightarrow A: NRR, B \rightarrow T: NRR, B: skip\}$

 $Act_T = \{T \rightarrow A: NRR, T \rightarrow B: NRO, T \rightarrow B:m, T: skip\}$

Actions of participants

 $Act_{A} = \{A \rightarrow B: m, A \rightarrow T: m, A \rightarrow B: NRO, A \rightarrow T: NRO, A: skip\}$

 $Act_B = \{B \rightarrow A: NRR, B \rightarrow T: NRR, B: skip\}$

 $Act_T = \{T \rightarrow A: NRR, T \rightarrow B: NRO, T \rightarrow B:m, T: skip\}$

Actions of participants

 $Act_{A} = \{A \rightarrow B: m, A \rightarrow T: m, A \rightarrow B: NRO, A \rightarrow T: NRO, A: skip\}$

 $Act_B = \{B \rightarrow A: NRR, B \rightarrow T: NRR, B: skip\}$

 $Act_T = \{T \rightarrow A: NRR, T \rightarrow B: NRO, T \rightarrow B:m, T: skip\}$

Controllable transition → Uncontrollable transition ----

Actions of participants

 $Act_{A} = \{A \rightarrow B: m, A \rightarrow T: m, A \rightarrow B: NRO, A \rightarrow T: NRO, A: skip\}$

 $Act_B = \{B \rightarrow A: NRR, B \rightarrow T: NRR, B: skip\}$

 $Act_T = \{T \rightarrow A: NRR, T \rightarrow B: NRO, T \rightarrow B:m, T: skip\}$

How can we *synthesize* the behavior of T, ensuring arbitrary behavior for A and B?

- Specification of the protocol:
 - there should *exist* a sequence of actions, such that the message m, the NRR, and the NRO get received, such that
 - ► for all similar executions of A and B, it must still hold that the NRR gets received if and only if the NRO gets received.

- Specification of the protocol:
 - there should *exist* a sequence of actions, such that the message m, the NRR, and the NRO get received, such that
 - ► for all similar executions of A and B, it must still hold that the NRR gets received if and only if the NRO gets received.
- ► This is a *hyperproperty*, i.e., a set of sets of traces.

 $(\begin{array}{c} \mathsf{Controllable} \\ \mathsf{Plant} \ \mathcal{P} \end{array})$

$(\begin{array}{c} \mathsf{Controllable} \\ \mathsf{Plant} \ \mathcal{P} \end{array})$

Uncontrollable transitions u

$(\begin{array}{c} \mathsf{Controllable} \\ \mathsf{Plant} \ \mathcal{P} \end{array})$

Uncontrollable transitions u

Hyperproperty φ

2. HyperLTL

M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, C. Sánchez: *Temporal Logics for Hyperproperties.* POST 2014: 265-284

Syntax

Semantics

Syntax

 $\alpha ::= \exists \pi. \alpha \mid \forall \pi. \alpha \mid \varphi$

Semantics

Syntax

 $\alpha ::= \exists \pi. \alpha \mid \forall \pi. \alpha \mid \varphi$ $\varphi ::= a_{\pi} \mid \varphi \lor \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathcal{U} \varphi$

Semantics

Syntax

 $\alpha ::= \exists \pi. \alpha \mid \forall \pi. \alpha \mid \varphi$ $\varphi ::= a_{\pi} \mid \varphi \lor \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathcal{U} \varphi$

Semantics

 $\begin{array}{ll} (W,\Pi) & \models \exists \pi.\alpha & \text{ iff } & \text{ for some } \sigma \in W \text{, } (W,\Pi[\pi \mapsto (\sigma,0)]) \models \alpha \\ (W,\Pi) & \models \forall \pi.\alpha & \text{ iff } & \text{ for all } \sigma \in W \text{, } (W,\Pi[\pi \mapsto (\sigma,0)]) \models \alpha \end{array}$

Syntax

 $\alpha ::= \exists \pi. \alpha \mid \forall \pi. \alpha \mid \varphi$ $\varphi ::= a_{\pi} \mid \varphi \lor \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathcal{U} \varphi$

Semantics

 $\begin{array}{ll} (W,\Pi) & \models \exists \pi.\alpha & \text{ iff } & \text{ for some } \sigma \in W, \ (W,\Pi[\pi \mapsto (\sigma,0)]) \models \alpha \\ (W,\Pi) & \models \forall \pi.\alpha & \text{ iff } & \text{ for all } \sigma \in W, \ (W,\Pi[\pi \mapsto (\sigma,0)]) \models \alpha \end{array}$

$$\begin{array}{ccccc} (W,\Pi) & \models \varphi & \text{iff} & \Pi \models \varphi \\ \Pi & \models a_{\pi} & \text{iff} & a \in \sigma(p), \text{ where } (\sigma,p) = \Pi(\pi) \\ \Pi & \models \varphi_1 \lor \varphi_2 & \text{iff} & \Pi \models \varphi_1 \text{ or } \Pi \models \varphi_2 \\ \Pi & \models \neg \varphi & \text{iff} & \Pi \not\models \varphi \end{array}$$

Syntax

 $\alpha ::= \exists \pi. \alpha \quad | \quad \forall \pi. \alpha \quad | \quad \varphi$ $\varphi ::= a_{\pi} \quad | \quad \varphi \lor \varphi \quad | \quad \neg \varphi \quad | \quad \bigcirc \varphi \quad | \quad \varphi \mathcal{U} \varphi$

Semantics

 $\begin{array}{ll} (W,\Pi) & \models \exists \pi.\alpha & \text{ iff } & \text{ for some } \sigma \in W, \ (W,\Pi[\pi \mapsto (\sigma,0)]) \models \alpha \\ (W,\Pi) & \models \forall \pi.\alpha & \text{ iff } & \text{ for all } \sigma \in W, \ (W,\Pi[\pi \mapsto (\sigma,0)]) \models \alpha \end{array}$

$$\begin{array}{lll} (W,\Pi) & \models \varphi & \text{iff} & \Pi \models \varphi \\ \Pi & \models a_{\pi} & \text{iff} & a \in \sigma(p), \text{ where } (\sigma,p) = \Pi(\pi) \\ \Pi & \models \varphi_1 \lor \varphi_2 & \text{iff} & \Pi \models \varphi_1 \text{ or } \Pi \models \varphi_2 \\ \Pi & \models \neg \varphi & \text{iff} & \Pi \not\models \varphi \end{array}$$

 $\begin{array}{cccc} \Pi & \models \bigcirc \varphi & \text{iff} & (\Pi + 1) \models \varphi \\ \Pi & \models \varphi_1 \ \mathcal{U} \ \varphi_2 & \text{iff} & \text{for some } j \ge 0 & (\Pi + j) \models \varphi_2 \\ & & \text{and for all } 0 \le i < j, (\Pi + i) \models \varphi_1 & \text{10/41} \end{array}$

► The meaning of *HyperLTL* formula

$$\varphi = \forall \pi. \forall \pi'. \Box (a_\pi \leftrightarrow a_{\pi'})$$

is that any pair of traces should agree on the value of a at every position.

► The meaning of *HyperLTL* formula

$$\varphi = \forall \pi. \forall \pi'. \Box (a_\pi \leftrightarrow a_{\pi'})$$

is that any pair of traces should agree on the value of a at every position.

► The meaning of *HyperLTL* formula

$$\varphi = \forall \pi. \forall \pi'. \Box (a_\pi \leftrightarrow a_{\pi'})$$

is that any pair of traces should agree on the value of a at every position.

► The meaning of *HyperLTL* formula

$$\varphi = \forall \pi. \forall \pi'. \Box (a_\pi \leftrightarrow a_{\pi'})$$

is that any pair of traces should agree on the value of a at every position.

Observational determinism [Zdancewich, Meyers 2003]:

 $\forall \pi. \forall \pi'. (i_\pi \leftrightarrow i_{\pi'}) \rightarrow \Box (o_\pi \leftrightarrow o_{\pi'})$

Observational determinism [Zdancewich, Meyers 2003]:

$$\forall \pi. \forall \pi'. (i_\pi \leftrightarrow i_{\pi'}) \rightarrow \Box (o_\pi \leftrightarrow o_{\pi'})$$

► *Non-inference* [McLean 1994]

 $\forall \pi. \exists \pi'. \Box(hi_{\pi}) \land \Box(li_{\pi} \leftrightarrow li_{\pi'} \land lo_{\pi} \leftrightarrow lo_{\pi'})$

► Non-repudiation:

Preliminaries – Plants

- A *plant* is a tuple $\mathcal{P} = \langle S, s_{init}, \mathfrak{c}, \mathfrak{u}, L \rangle$, where
 - ► S is a finite set of *states*;
 - ► $s_{init} \in S$ is the *initial state*;
 - c, u ⊆ S × S are respectively sets of of *controllable* and *uncontrollable* transitions, where c ∩ u = {}, and
 - $L: S \to \Sigma$ is a *labeling function* on the states of \mathcal{P} .

3. Problem Statement

Session-based and terminating protocols

HyperLTL fragment	Tree	Acyclic	General
E*	L-complete	NL-complete (Theorem 5)	NL-complete (Theorem 9)
E*A	(Theorem 1)	Σ_2^p	PSPACE-complete
AE*	P-complete (Theorem 2)	Σ_2^p -complete (<i>Theorem 8</i>)	(Theorem 11)
AA ⁺		NP-complete (Theorem 6)	NP-complete (Theorem 10)
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)	Σ_k^p -complete (<i>Theorem 8</i>)	(k-1)-EXPSPACE- complete (Theorem 11)
$(A^*E^*)^k$, $k\geq 1$		Σ^p_{k+1} -complete (Theorem 8)	
(A*E*)*		PSPACE (Corollary 3)	NONELEMENTARY (Corollary 4)

HyperLTL fragment	Tree	Acyclic	General
E*	L-complete	NL-complete (Theorem 5)	NL-complete (Theorem 9)
E*A	(Theorem 1)	Σ^p_2	PSPACE-complete
AE*	P-complete (Theorem 2)	$\frac{\Sigma_2^p\text{-complete}}{(Theorem \ 8)}$	(Theorem 11)
AA ⁺		NP-complete (Theorem 6)	NP-complete (Theorem 10)
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)	Σ^p_k -complete (Theorem 8)	(k-1)-EXPSPACE- complete (Theorem 11)
$(A^*E^*)^k$, $k\geq 1$		Σ^p_{k+1} -complete (Theorem 8)	
(A*E*)*		PSPACE (Corollary 3)	NONELEMENTARY (Corollary 4)

HyperLTL fragment	Tree	Acyclic	General
E*	L-complete	NL-complete (Theorem 5)	NL-complete (Theorem 9)
E*A	(Theorem 1)	Σ^p_2	PSPACE-complete
AE*	P-complete (Theorem 2)	Σ_2^p -complete (<i>Theorem 8</i>)	(Theorem 11)
AA ⁺		NP-complete (Theorem 6)	NP-complete (Theorem 10)
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)	Σ_k^p -complete (Theorem 8)	(k-1)-EXPSPACE- complete (Theorem 11)
$(A^*E^*)^k$, $k\geq 1$		Σ^p_{k+1} -complete (Theorem 8)	
(A*E*)*		PSPACE (Corollary 3)	NONELEMENTARY (Corollary 4)

HyperLTL fragment	Tree	Acyclic	General
E*	L-complete	NL-complete (Theorem 5)	NL-complete (Theorem 9)
E*A	(Theorem 1)	Σ_2^p	PSPACE-complete
AE*	P-complete (Theorem 2)	Σ_2^p -complete (<i>Theorem 8</i>)	(Theorem 11)
AA ⁺		NP-complete (Theorem 6)	NP-complete (Theorem 10)
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)	Σ_k^p -complete (Theorem 8)	(k-1)-EXPSPACE- complete (Theorem 11)
$(A^*E^*)^k$, $k\geq 1$		Σ^p_{k+1} -complete (Theorem 8)	
(A*E*)*		PSPACE (Corollary 3)	NONELEMENTARY (Corollary 4)

HyperLTL fragment	Tree
E*	L-complete
E*A	(I heorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Upper bound

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Upper bound

 $|paths| \le |states|$ trace length $\le |states|$

Upper bound

We only need one path per ∃
1. *Find path assignment:*▶ go through all path assignments for ∃* using logarithmic counters

Go through all path assignments for ∀* to one of the ∃-paths

 $\begin{aligned} |\mathsf{paths}| &\leq |\mathsf{states}| \\ \mathsf{trace \ length} &\leq |\mathsf{states}| \end{aligned}$

Upper bound

2. Verify correctness:

 check each temporal operator with a logarithmic counter $|paths| \le |states|$ trace length $\le |states|$

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA ⁺	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Upper bound $(\forall \pi_1. \exists \pi_2. \psi)$

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Upper bound $(\forall \pi_1. \exists \pi_2. \psi)$

1. We begin by *marking* all leaves and proceed in several rounds, in which at least one mark is removed (*linear* rounds).

Upper bound $(\forall \pi_1. \exists \pi_2. \psi)$

1. We begin by *marking* all leaves and proceed in several rounds, in which at least one mark is removed (*linear* rounds).

2. In each *round*, we go through all marked leaves v_1 and instantiate π_1 with the trace leading to v_1 . We then again go through all marked leaves v_2 and instantiate π_2 with the trace leading to v_2 , and check ψ on the pair of traces (*linear* time).

Upper bound $(\forall \pi_1. \exists \pi_2. \psi)$

1. We begin by *marking* all leaves and proceed in several rounds, in which at least one mark is removed (*linear* rounds).

2. In each *round*, we go through all marked leaves v_1 and instantiate π_1 with the trace leading to v_1 . We then again go through all marked leaves v_2 and instantiate π_2 with the trace leading to v_2 , and check ψ on the pair of traces (*linear* time).

3. If successful for some instantiation of π_2 , we leave v_1 marked, otherwise we remove the mark. If no mark was removed by the end of the round, we terminate.

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Lower bound

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Lower bound

Reduction from the *horn SAT* problem

HyperLTL fragment	Tree
E*	L-complete (Theorem 1)
E*A	
AE*	P-complete (Theorem 2)
AA^+	NP-complete (Corollary 1)
$(E^*A^*)^k$, $k\geq 2$	
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	
Lower bound	
--------------------------	------------------------------
HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Reduction from the *horn SAT* problem $(\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor x_4) \land (\neg x_1)$

Lower	<u>bound</u>	Reduction from the <i>horn SAT</i> problem
HyperLTL fragment	Tree	$ \left \begin{array}{c} (\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor x_4) \land (\neg x_1) \\ = (\neg x_1 \lor \neg x_2 \lor f) \land (\neg x_3 \lor \neg f \lor x_4) \land \\ (\neg x_2 \lor \neg x_2 \lor x_4) \land (\neg x_1 \lor \neg x_1 \lor \bot) \end{array} \right $
E*	L-complete	$X = \{\bot, x_1, x_2, x_3, x_4, f, \bot\}$
E*A	(Theorem 1)	
AE*	P-complete (Theorem 2)	
AA ⁺	_	
$(E^*A^*)^k,$ $k\geq 2$	NP-complete (Corollary 1)	
$(A^*E^*)^k, \\ k \ge 1$		
(A*E*)*		

Lower	<u>bound</u>	Reduction from the <i>horn SAT</i> problem
HyperLTL fragment	Tree	$ \begin{vmatrix} (\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor x_4) \land (\neg x_1) \\ = (\neg x_1 \lor \neg x_2 \lor f) \land (\neg x_3 \lor \neg f \lor x_4) \land \\ (\neg x_2 \lor \neg x_2 \lor x_4) \land (\neg x_1 \lor \neg x_1 \lor \bot) \end{vmatrix} $
E*	L-complete	$X = \{\bot, x_1, x_2, x_3, x_4, f, +\}$
E*A	(Theorem 1)	
AE*	P-complete (Theorem 2)	
AA ⁺	_	
$(E^*A^*)^k,$ $k\geq 2$	NP-complete (Corollary 1)	
$(A^*E^*)^k, \\ k \ge 1$		
(A*E*)*		

Lower	<u>bound</u>	Reduction from the <i>horn SAT</i> problem
HyperLTL fragment	Tree	$ \left \begin{array}{c} (\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor x_4) \land (\neg x_1) \\ = (\neg x_1 \lor \neg x_2 \lor f) \land (\neg x_3 \lor \neg f \lor x_4) \land \\ (\neg x_2 \lor \neg x_2 \lor x_4) \land (\neg x_1 \lor \neg x_1 \lor \bot) \end{array} \right $
E*	L-complete	$X = \{\bot, x_1, x_2, x_3, x_4, f, \bot\}$
E*A	(Theorem 1)	
AE*	P-complete (Theorem 2)	
AA ⁺	-	
$(E^*A^*)^k,$ $k\geq 2$	NP-complete (Corollary 1)	
$(A^*E^*)^k$, $k\geq 1$		
(A*E*)*		

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA ⁺	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Upper bound

Guess a solution to the synthesis problem
Verify the correctness of the solution

(using logarithmic counters for path assignments and temporal operators as before)

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Lower bound

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA ⁺	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Lower bound	
HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Reduction from the *3SAT* problem

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Lower bound

Reduction from the *3SAT* problem $(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_4)$

HyperLTL fragment	Tree
E*	L-complete (Theorem 1)
E*A	
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Lower bound

Reduction from the *3SAT* problem $(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_4)$

Lower bound	
HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Reduction from the *3SAT* problem $(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_4)$ y_1

HyperLTL fragment	Tree
E*	L-complete
E*A	
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k,\\k\geq 1$	
(A*E*)*	

Lower bound

Reduction from the *3SAT* problem $(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_4)$ y_1

HyperLTL fragment	Tree
E*	L-complete (Theorem 1)
E*A	
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Lower bound

Reduction from the *3SAT* problem $(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_4)$ y_1 $\{neg\}$ $(\{neg\})$ $({pos})$

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Lower bound

Reduction from the *3SAT* problem $(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_4)$ y_1 y_2 $\{neg\}$ $\{pos\}$ $(\{neg\})$ $(\{pos\})$ $(\{pos\})$ $\{neg\}$

HyperLTL fragment	Tree
E*	L-complete
E*A	(Theorem 1)
AE*	P-complete (Theorem 2)
AA^+	
$(E^*A^*)^k$, $k\geq 2$	NP-complete (Corollary 1)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	

Lower bound

Reduction from the *3SAT* problem $(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_4)$ y_1 y_2 $\{pos\}$ $\{neg\}$ $(\{neg\})$ $(\{pos\})$ $(\{pos\})$ $\{neg\}$ $\varphi_{\mathsf{map}} = \forall \pi_1. \forall \pi_2. \Box \left(\neg pos_{\pi_1} \lor \neg neg_{\pi_2} \right)$

HyperLTL fragment	Tree (Controller Synthesis)	Tree [BF18] (Verification)
E*	L-complete	
E*A	(Theorem 1)	
AE*	P-complete (<i>Theorem 2</i>)	L-complete
AA ⁺		
$(E^*A^*)^k,$ $k\geq 2$	NP-complete (Corollary 1)	
$(A^*E^*)^k$, $k\geq 1$		
(A*E*)*		

 (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, *The complexity of monitoring hyperproperties*. CSF 2018.

HyperLTL fragment	Tree (Controller Synthesis)	Tree [BF18] (Verification)
E*	L-complete	
E*A	(Theorem 1)	
AE*	P-complete (Theorem 2)	L-complete
AA ⁺		
$(E^*A^*)^k,$ $k\geq 2$	NP-complete (Corollary 1)	
$(A^*E^*)^k$, $k\geq 1$		
(A*E*)*		

 (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, *The complexity of monitoring hyperproperties*. CSF 2018.

Upper	bound
-------	-------

HyperLTL fragment	Acyclic
E*	NL-complete (Theorem 5)
E*A	Σ^p_2
AE*	Σ_2^p -complete (<i>Theorem 8</i>)
AA^+	NP-complete (Theorem 6)
$(E^*A^*)^k$, $k\geq 2$	Σ_k^p -complete (<i>Theorem 8</i>)
$(A^*E^*)^k$, $k\geq 1$	Σ^p_{k+1} -complete (Theorem 8)
(A*E*)*	PSPACE (Corollary 3)

HyperLTL fragment	Acyclic
E*	NL-complete (Theorem 5)
E*A	Σ_2^p
AE*	$\frac{\Sigma_2^p\text{-complete}}{(Theorem \ 8)}$
AA^+	NP-complete (Theorem 6)
$(E^*A^*)^k$, $k\geq 2$	$\frac{\Sigma_k^p \text{-complete}}{(Theorem \ 8)}$
$(A^*E^*)^k$, $k\geq 1$	Σ^p_{k+1} -complete (Theorem 8)
(A*E*)*	PSPACE (Corollary 3)

Upper bound

1. *Guess* a solution to synthesis + path assignment for leading \exists^*

2. Verify the remaining formula (model checking is in Π_k^p)

HyperLTL fragment	Acyclic (Controller Synthesis)	Acyclic [BF18] (Verification)
E*	NL-complete	
E*A	(Theorem 5)	NL-complete
AA^+	NP-complete (Theorem 6)	
AE*	Σ_2^p -complete (<i>Theorem 8</i>)	Π_2^p -complete
$(E^*A^*)^k$, $k\geq 2$	Σ_k^p -complete (<i>Theorem 8</i>)	${\sf \Sigma}_k^p$ -complete
$(A^*E^*)^k$, $k\geq 1$	Σ^p_{k+1} -complete (Theorem 8)	Π^p_k -complete
(A*E*)*	PSPACE (Corollary 3)	PSPACE

HyperLTL fragment	Acyclic (Controller Synthesis)	Acyclic [BF18] (Verification)
E*	NL-complete	
E*A	(Theorem 5)	NL-complete
AA^+	NP-complete (Theorem 6)	
AE*	Σ_2^p -complete (<i>Theorem 8</i>)	Π^p_2 -complete
$(E^*A^*)^k$, $k\geq 2$	Σ_k^p -complete (<i>Theorem 8</i>)	${\sf \Sigma}_k^p$ -complete
$(A^*E^*)^k$, $k\geq 1$	Σ^p_{k+1} -complete (Theorem 8)	Π^p_k -complete
(A*E*)*	PSPACE (Corollary 3)	PSPACE

 (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, *The complexity of monitoring hyperproperties*. CSF 2018.

5. Controller Synthesis for General Graphs

Controller Synthesis for General Graphs

HyperLTL fragment	General
E*	NL-complete (Theorem 9)
E*A	PSPACE-complete
AE*	(Theorem 11)
AA^+	NP-complete (Theorem 10)
$(E^*A^*)^k$, $k\geq 2$	(k-1)-EXPSPACE- complete (Theorem 11)
$(A^*E^*)^k$, $k\geq 1$	
(A*E*)*	NONELEMENTARY (Corollary 4)

Upper bound

Controller Synthesis for General Graphs

HyperLTL fragment	General	
E*	NL-complete (Theorem 9)	
E*A	PSPACE-complete	
AE*	(Theorem 11)	
AA^+	NP-complete (Theorem 10)	
$(E^*A^*)^k$, $k\geq 2$	(k-1)-EXPSPACE- complete (Theorem 11)	
$(A^*E^*)^k$, $k\geq 1$		
(A*E*)*	NONELEMENTARY (Corollary 4)	

Upper bound

Synthesis is *dominated* by verification 1. Guess a solution to the synthesis problem

2. Verify

Controller Synthesis for General Graphs

HyperLTL fragment	General (Controller Synthesis)	General [BF18] <i>(Verification)</i>
E*	NL-complete (Theorem 9)	NI -complete
AA ⁺	NP-complete (Theorem 10)	
E*A	PSPACE-complete (Theorem 11)	PSPACE-complete
AE*		
$(E^*A^*)^k$, $k\geq 2$	(k-1)-EXPSPACE- complete (Theorem 11)	(k-1)-EXPSPACE-complete
$(A^*E^*)^k$, $k\geq 1$		
(A*E*)*	NONELEMENTARY (Corollary 4)	NONELEMENTARY
Controller Synthesis for General Graphs

HyperLTL fragment	General (Controller Synthesis)	General [BF18] <i>(Verification)</i>				
E*	NL-complete (Theorem 9)	NI -complete				
AA ⁺	NP-complete (Theorem 10)					
E*A	PSPACE-complete	PSPACE-complete				
AE*	("neorem 11)					
$(E^*A^*)^k$, $k\geq 2$	(k-1)-EXPSPACE- complete (Theorem 11)	(k-1)-EXPSPACE-complete				
$(A^*E^*)^k$, $k\geq 1$						
(A*E*)*	NONELEMENTARY (Corollary 4)	NONELEMENTARY				

5. The Tool HyperQube

- Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour: Bounded Model Checking for Hyperproperties. TACAS 2021: 94-112
- Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sánchez: HyperQube: A QBF-Based Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021)

HyperQube

- HyperQube is a push-button QBF-based bounded model checker for hyperproperties.
- Unlike the existing similar tools, the QBF-based technique allows HyperQube to seamlessly deal with *quantifier alternations*.

- Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour: Bounded Model Checking for Hyperproperties. TACAS 2021: 94-112
- Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sánchez: HyperQube: A QBF-Based Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021)

HyperQube Performance

	#	Model K	Formula	QBF	sem	states	k	parseSMV (sec)	(sec)	QuAbS (sec)	(sec)	
ĺ	0.1	Bakery.3proc	φ_{S1}	SAT	pes	167	10	0.33	0.84	0.33	1.50	×
	0.2	Bakery.3proc	φ_{S2}	SAT	pes	167	10	0.32	0.94	0.38	1.64	×
Symmetry {	0.3	Bakery.3proc	φ_{S3}	UNSAT	opt	167	10	0.34	0.84	0.36	1.54	1
in HW	1.1	Bakery.3proc	arphisym 1	SAT	pes	167	10	0.36	0.85	0.36	1.57	×
	1.2	Bakery.3proc	arphisym 2	SAT	pes	167	10	0.53	0.83	0.48	1.84	×
	1.3	Bakery.5proc	arphisym 1	SAT	pes	996	10	1.73	11.88	8.17	21.78	×
Ĺ	1.4	Bakery.5proc	arphisym 2	SAT	pes	996	10	1.52	12.40	7.66	21.58	×
Linearizability	2.1	SNARK-bug1	arphilin	SAT	pes	4914/548	18	49.13	119.90	429.16	598.19	×
Information-flow	2.2	SNARK-bug2	arphilin	SAT	pes	3405/664	30	50.57	407.54	327.02	785.13	×
	3.1	$3-Thread_{incorrect}$	arphiNI	SAT	h-pes	368	50	0.50	8.61	5.47	14.58	×
	3.2	3-Thread _{correct}	$arphi_{NI}$	UNSAT	h-opt	64	50	0.24	1.45	0.68	2.37	1
Security	4.1	$NRP: T_{incorrect}$	$arphi_{fair}$	SAT	h-pes	55	15	0.23	0.39	0.28	0.90	×
J L	4.2	$NRP: T_{correct}$	$arphi_{fair}$	UNSAT	h-opt	54	15	0.24	0.41	0.49	1.14	~
	5.1 Shortest Path										sis	
	5.2	Initial State Robustness	(see Table 5)							synthe		
Mutation { Testing {	6.1	Mutant	arphimut	SAT	h-pes	32	10	0.20	0.17	0.09	0.46	

•

....

Synthesis using HyperQube

 Adversarial multi-agent path planning

Prop.	# adv.	# agents	QS	size	h	Total[s]	
₽react		1	Α∃	10^{2}	20	3.78	
	1			20^{2}	40	95.50	
				30^{2}	60	1597.70	
		1	AA∃	10^{2}	20	10.13	
	2			20^{2}	40	597.86	
				30^{2}	60	5627.61	
	3	1	AAA∃	10^{2}	20	13.66	
				20^{2}	40	407.62	
				30^{2}	60	5370.74	
		2	A∃∃	10^{2}	20	14.41	
	1			20^{2}	40	973.98	
				30^{2}	60	16785.63	
	1	1 3	ABBB	10^{2}	20	17.65	
				A333	20^{2}	40	1559.10
				30^{2}	60	68059.38	

(b) One agent vs Multi-adversary

37/41

(a) Multi-agent vs one Adversary

Controller Synthesis using HyperQube

► Non-repudiation:

$$\varphi = \exists \pi. \forall \pi'. \ (\diamondsuit m_{\pi}) \land (\diamondsuit NRR_{\pi}) \land (\diamondsuit NRO_{\pi})$$
(effectiveness)
$$\land \left((\Box \bigwedge_{a \in Act_{A}} a_{\pi} \Leftrightarrow a_{\pi'}) \Rightarrow \left((\diamondsuit NRR_{\pi'}) \Leftrightarrow (\diamondsuit NRO_{\pi'}) \right) \right)$$
(fairness for A)
$$\land \left((\Box \bigwedge_{a \in Act_{B}} a_{\pi} \Leftrightarrow a_{\pi'}) \Rightarrow \left((\diamondsuit NRR_{\pi'}) \Leftrightarrow (\diamondsuit NRO_{\pi'}) \right) \right)$$
(fairness for B)

Controller Synthesis using HyperQube

Non-repudiation:

$$\varphi = \exists \pi. \forall \pi'. (\diamondsuit m_{\pi}) \land (\diamondsuit NRR_{\pi}) \land (\diamondsuit NRO_{\pi})$$
(effectiveness)
$$\land \left((\Box \bigwedge_{a \in Act_{A}} a_{\pi} \Leftrightarrow a_{\pi'}) \Rightarrow \left((\diamondsuit NRR_{\pi'}) \Leftrightarrow (\diamondsuit NRO_{\pi'}) \right) \right)$$
(fairness for A)
$$\land \left((\Box \bigwedge_{a \in Act_{B}} a_{\pi} \Leftrightarrow a_{\pi'}) \Rightarrow \left((\diamondsuit NRR_{\pi'}) \Leftrightarrow (\diamondsuit NRO_{\pi'}) \right) \right)$$
(fairness for B)

- We ran HyperQube *iteratively*, where each round finds a new witness to the existential quantifier in formula until there is no more such trace.
- We synthesized the correct non-repudiation protocol in only 0.8s.

Controller Synthesis using HyperQube

Non-repudiation:

$$\varphi = \exists \pi. \forall \pi'. (\diamondsuit m_{\pi}) \land (\diamondsuit NRR_{\pi}) \land (\diamondsuit NRO_{\pi})$$
(effectiveness)
$$\land \left((\Box \bigwedge_{a \in Act_{A}} a_{\pi} \Leftrightarrow a_{\pi'}) \Rightarrow \left((\diamondsuit NRR_{\pi'}) \Leftrightarrow (\diamondsuit NRO_{\pi'}) \right) \right)$$
(fairness for A)
$$\land \left((\Box \bigwedge_{a \in Act_{B}} a_{\pi} \Leftrightarrow a_{\pi'}) \Rightarrow \left((\diamondsuit NRR_{\pi'}) \Leftrightarrow (\diamondsuit NRO_{\pi'}) \right) \right)$$
(fairness for B)

- We ran HyperQube *iteratively*, where each round finds a new witness to the existential quantifier in formula until there is no more such trace.
- We synthesized the correct non-repudiation protocol in only 0.8s.

(1) skip until $A:m \rightarrow T$; (2) skip until $A:NRO \rightarrow T$; (4) skip until $B \rightarrow T:NRR$; (5) $T \rightarrow B:NRO$;

(3) $T \rightarrow B:m;$ (6) $T \rightarrow A:NRR;$

6. Conclusion

Conclusion

Summary

- Controller synthesis is a promising approach to synthesize secure systems
- Similar complexity to verification
- Potential for scalable algorithms and tools for relevant fragments

Future work

- Hyperlogics beyond HyperLTL (e.g., HyperCTL*, FO/SO hyperlogics)
- Controller synthesis beyond finite state spaces
- Syntax-guided synthesis for hyperproperties

Thanks!