HYPER 2021

Controller Synthesis
for
Hyperproperties

Borzoo Bonakdarpour

October 18, 2021

This is joint work with

Bernd Finkbeiner

" |CISPA

HELMHOLTZ CENTER FOR

\3
/II\\ INFORMATION SECURITY

» Borzoo Bonakdarpour, Bernd Finkbeiner, Controller Synthesis for Hyperproperties The
33rd IEEE International Symposium on Computer Security Foundations (CSF), 2020

2/41

1. Motivation

3/41

Motivation

» The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

T

4/41

Motivation

» The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

1 » The recipient of the message obtains an

B NRO evidence.
)5

4/41

Motivation

» The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

1 » The recipient of the message obtains an

B NRO evidence.
%>
f \ » The sender of the message obtains an

O g NRR evidence.

S
A B

4/41

Motivation

» The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

1 » The recipient of the message obtains an

B NRO evidence.
%>
f \ » The sender of the message obtains an

O g NRR evidence.

S
A B

» The protocol is effective if it is possible to successfully transmit the
message to the recipient and the evidence to both parties.

4/41

Motivation

» The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

1 » The recipient of the message obtains an

B NRO evidence.
%>
f \ » The sender of the message obtains an

O g NRR evidence.

S
A B

» The protocol is effective if it is possible to successfully transmit the
message to the recipient and the evidence to both parties.

» The protocol is fair if it is impossible for one party to obtain the

evidence without the other party also receiving the evidence. 1/a1

Motivation

Actions of participants

5/41

Motivation

Actions of participants

Acta = {A—B:m, A—-T-m, A—B:NRO, A—T:NRO, A:skip}
Actp = {B—A:NRR, B—T:NRR, B:skip}

Actr = {T—A:NRR,T—B:NRO,T—B:m,T:skip}

5/41

Motivation

Actions of participants

Acta = {A—B:m, A—-T-m, A—B:NRO, A—T:NRO, A:skip}
Actp = {B—A:NRR, B—T:NRR, B:skip}

Actr = {T—A:NRR,T—B:NRO,T—B:m,T:skip}

Controllable transition —>

Uncontrollable transition ----p»

5/41

Motivation

Actions of participants

Acta = {A—B:m, A—-T-m, A—B:NRO, A—T:NRO, A:skip}
Actp = {B—A:NRR, B—T:NRR, B:skip}

Actr = {T—A:NRR,T—B:NRO,T—B:m,T:skip}

¢"‘ A NN‘\
4*"// » A \\\m
T T - T T
)/\\)/\1)/\ p/\ Controllable transition — >
B B B B-—-B B B B Uncontrollable transition ----»

5/41

Motivation

Actions of participants

Acta = {A—B:m, A—-T-m, A—B:NRO, A—T:NRO, A:skip}
Actp = {B—A:NRR, B—T:NRR, B:skip}

Actr = {T—A:NRR,T—B:NRO,T—B:m,T:skip}

¢"‘ A NN‘\
4*"// » A \\\m
1T 1T - T 1
)/\\)/\1)/\ p/\ Controllable transition — >
IB B B B B B B B Uncontrollable transition ----»
Y VY VvV ¥ Y VvV VvV v
T T rT---rorT T r

5/41

Motivation

Actions of participants

Acta = {A—B:m, A—-T-m, A—B:NRO, A—T:NRO, A:skip}
Actp = {B—A:NRR, B—T:NRR, B:skip}

Actr = {T—A:NRR,T—B:NRO,T—B:m,T:skip}

¢”‘ A NN‘\
a)'/ \ A T
T T - T T
)/\\)/\1)/\ p/\ Controllable transition — >
B B B B b B B B Uncontrollable transition ----»
\/ v OV v v Y OV v
T T T T ---T T T T

How can we synthesize the behavior of T,
ensuring arbitrary behavior for A and B? 5/41

Motivation

» Specification of the protocol:

» there should exist a sequence of actions, such that the message
m, the NRR, and the NRO get received, such that

» for all similar executions of A and B, it must still hold that the
NRR gets received if and only if the NRO gets received.

6/41

Motivation

» Specification of the protocol:

» there should exist a sequence of actions, such that the message
m, the NRR, and the NRO get received, such that

» for all similar executions of A and B, it must still hold that the
NRR gets received if and only if the NRO gets received.

» This is a hyperproperty, i.e., a set of sets of traces.

6/41

Motivation

Prominent security breaches related to information flow
security (hyperproperties)

7/41

Motivation

Prominent security breaches related to information flow
security (hyperproperties)

MELTDOWN

7/41

Motivation

Prominent security breaches related to information flow
security (hyperproperties)

9 £y

MELTDOWN SP [CTR [

7/41

Motivation

Prominent security breaches related to information flow

security (hyperproperties)
7/41

MELTI;OWN SP ECTR [

Informal Problem Statement

8/41

Informal Problem Statement

(Controllable)
Plant P

8/41

Informal Problem Statement

(Controllable)
Plant P

Uncontrollable
transitions u

8/41

Informal Problem Statement

(Controllable)

Plant P

Uncontrollable
transitions u

Hyperproperty ¢

8/41

Informal Problem Statement

(Controllable)

Plant P —»
Controller

Synthesis
Uncontrollable Algorithm

transitions u

Hyperproperty ¢

8/41

Informal Problem Statement

(Controllable)

Plant P —»
Controller

Synthesis
Uncontrollable Algorithm

transitions u

Hyperproperty ¢

» Plant P’
S.t.

PUu =

8/41

2. HyperLTL

M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, C. Sanchez:
Temporal Logics for Hyperproperties. POST 2014: 265-284

9/41

Preliminaries — HyperLTL
Syntax

Semantics

10/41

Preliminaries — HyperLTL
Syntax

= dr.a ‘ V.« ‘ ©

Semantics

10/41

Preliminaries — HyperLTL
Syntax

= dr.a ‘ V.« ‘ ©

pi=ar | eVe | me | Op | Uy

Semantics

10/41

Preliminaries — HyperLTL
Syntax

= dm.a ‘ V.o ‘ ©

pi=ar | eVe | me | Op | Uy
Semantics

(W, II) = dr.a iff for some o € W, (W, Il|7 +— (0,0)]) &= «
(W, II) = Vr.«a iff for all 0 € W, (W, Il|7 — (0,0)]) E «

10/41

Preliminaries — HyperLTL

Syntax

= dm.a ‘ V.o ‘ ©

pi=ar | eVe | me | Op | Uy

Semantics
(W,II) = dr.«a
(W,II) EVr.a
(Wa H) — ¢
II =a;,
II =¢1 Ve
I =

iff
iff
iff
iff

o L o

— ¢

€ o(p), where (o,p) = II(7)
= @1 or Il = ¢

ks

for some o € W, (W, Il|7 +— (0,0)]) &= «
for all 0 € W, (W, Il|7 — (0,0)]) E «

10/41

Preliminaries — HyperLTL
Syntax

= dm.a ‘ V.o ‘ ©
pu=ar | Ve | mo | O¢ | Uy
Semantics

(W,II) E dr.a iff for some o € W, (W, Il|7 +— (0,0)]) &= «
(W, II) = Vr.«a iff for all 0 € W, (W, Il|7 — (0,0)]) E «

(W,II) =y Iff Il =
I =a, iff a € o(p), where (o,p) = II()
I @1V iff TLE e or Il = g

II EOp iff (II4+1) E ¢

I = ol iff for some j >0 (IT+ 7) = 9
and for a||0§7,<],(1_[—|—?,) ’: ©1 10/41

Preliminaries — HyperLTL

11/41

Preliminaries — HyperLTL

» The meaning of HyperLTL formula
o =Vr.vr'.0O(ar < arx)

Is that any pair of traces should agree on the value of a at every
position.

11/41

Preliminaries — HyperLTL

» The meaning of HyperLTL formula
o =Vr.vr'.0O(ar < arx)

Is that any pair of traces should agree on the value of a at every
position. , . . .
(D=~ —~()—
(O~~~

11/41

Preliminaries — HyperLTL

» The meaning of HyperLTL formula

Is that any pair of traces should agree on the value of a at every

position.

o =Vr.vr'.0O(ar < arx)

OO0
OO~

OO0
O~0~0—~0O

11/41

Preliminaries — HyperLTL

» The meaning of HyperLTL formula

Is that any pair of traces should agree on the value of a at every
position.

o =Vr.vr'.0O(ar < arx)

OO0
@*@*@*@*

11/41

Preliminaries — HyperLTL

12/41

Preliminaries — HyperLTL

» Observational determinism [Zdancewich, Meyers 2003]:

Va7 (iz < ix) — O(ox < o)

12/41

Preliminaries — HyperLTL

» Observational determinism [Zdancewich, Meyers 2003]:

Va7 (iz < ix) — O(ox < o)

» Non-inference [McLean 1994]

V. 3r . O(hiz) AO(lig <> lig A log <> logr)

12/41

Preliminaries — HyperLTL

13/41

Preliminaries — HyperLTL

» Non-repudiation:

e =3dnNr'. (Omy) A(ONRR;) N (O NRO,)
(effectiveness)
A@Nacaers an & ax) = (O NRRw) 4 (O NRO)))
(fairness for A)
A ((m Auc et Ox < ax) = (O NRRy) & (O NROW/)))
(fairness for B)

13/41

Preliminaries — Plants

> A plantis a tuple P = (S, Sinit, ¢, 1, L), where
» S is a finite set of states:
> Sinit €5 Is the initial state;
> ¢, u C S x § are respectively sets of of controllable and
uncontrollable transitions, where ¢cNu = {}, and
» L :S — X is a labeling function on the states of P.

S1 S92

{a} 0=

14/41

3. Problem Statement

15/41

Formal Problem Statement

Hyperproperty ¢

Controller

Synthesis ——» Plant P’ = <S/, S;m'tv ¢ L/>
Algorithm

|

Plant P = (5, sinit, ¢, u, L)

16/41

Formal Problem Statement

Hyperproperty ¢

Controller

Synthesis ——» Plant P’ = <S/, S;m'tv ¢ L/>
Algorithm

|

Plant P = (5, sinit, ¢, u, L)

S.T.
S'=1S5

L'=1L
P Ee

vvvyyvyyvyy
ﬁ\
M
a

16/41

Formal Problem Statement

Hyperproperty ¢

Controller

Synthesis ——» Plant P’ = <S/, S;m'tv ¢ L/>
Algorithm

|

Plant P = (5, sinit, ¢, u, L)

S.T.
S'=1S5

I'=1L
P Ee

vvyvyvyvVvy
ﬁ\
M
a

16/41

Formal Problem Statement

[wy (observational determinism)
Hyperproperty ¢ ¢ V3 (non-inference)

3V (non-repudiation)
VWV (generalized non-interference)

Controller

Synthesis ——» Plant P’ = <S/, S;m'tv ¢ L/>
Algorithm

|

Plant P = (5, sinit, ¢, u, L)

S.T.
S'=1S5

I'=1L
P Ee

vvyvyvyvVvy
ﬁ\
M
a

16/41

Formal Problem Statement

/
VV (jobservational determinism)

Hyperproperty ¢ ¢ | V3 (non-inference)

3V (jnon-repudiation)
|| VV3|(generalized non-interference)

Controller

Synthesis ——» Plant P’ = <S/, S;m'tv ¢ L/>
Algorithm

|

Plant P = (5, sinit, ¢, u, L)

S.T.
S'=1S5

I'=1L
P Ee

vvyvyvyvVvy
ﬁ\
M
a

16/41

Formal Problem Statement

/
VV (jobservational determinism)

Hyperproperty ¢ ¢ | V3 (non-inference)

3V (jnon-repudiation)
|| VV3|(generalized non-interference)

Controller

Synthesis ——» Plant P’ = <S/, S;m'tv ¢ L/>
Algorithm

|

Plant P = (5, sinit, ¢, u, L)

/\
/ N

tree acyclic general

S.T.
S'=1S5

I'=1L
P Ee

vvyvyvyvVvy
ﬁ\
M
a

16/41

Formal Problem Statement

/
VV (jobservational determinism)

Hyperproperty ¢ ¢ | V3 (non-inference)

3V (jnon-repudiation)
|| VV3|(generalized non-interference)

Controller

Synthesis ——» Plant P’ = <S/, S;m'tv ¢ L/>
Algorithm

|

Plant P = (5, sinit, ¢, u, L)

S.T.
S'=1S5

vvyvyvyvVvy
ﬁ\
M
a

‘ e A L'=1L
tree acyclic genera
.) Pl =
N

Session-based and terminating protocols
16/41

Summary of Results

HyperLTL Tree Acyclic General
fragment
£ NL-complete NL-complete
L-complete (Theorem 5) (Theorem 9)
(Theorem 1)
* p
E°A 2 PSPACE-complete
Th 11
AE* P-complete ¥ P-complete (Theorem 11)
(Theorem 2) (Theorem 8)
AA NP-complete NP-complete
(Theorem 6) (Theorem 10)
Y P-complete
*AF)E k k—1)-EXPSPACE-
(Eki ; | NP-complete (Theorem) (<):om lete
= (Corollary 1) P
(Theorem 11)
Y P . -complete
*)\ k k+1
(A]; E i ' (Theorem 8)
AFE)* PSPACE NONELEMENTARY
() (Corollary 3) (Corollary 4)

17/41

Summary of Results

HyperLTL Tree Acyclic General
fragment
£ NL-complete NL-complete
L-complete (Theorem 5) (Theorem 9)
(Theorem 1)
* p
E°A 2 PSPACE-complete
Th 11
AE* P-complete ¥ P-complete (Theorem 11)
(Theorem 2) (Theorem 8)
AA NP-complete NP-complete
(Theorem 6) (Theorem 10)
Y P-complete
*AF)E k k—1)-EXPSPACE-
(Eki ; | NP-complete (Theorem) (<):om lete
= (Corollary 1) P
(Theorem 11)
Y P . -complete
*)\ k k+1
(A]; E i ' (Theorem 8)
AFE)* PSPACE NONELEMENTARY
() (Corollary 3) (Corollary 4)

17/41

Summary of Results

HyperLTL Tree Acyclic General
fragment
£ NL-complete NL-complete
L-complete (Theorem 5) (Theorem 9)
(Theorem 1)
* p
E°A 2 PSPACE-complete
Th 11
AE* P-complete Y b-complete (Theorem 11)
(Theorem 2) (Theorem 8)
AA NP-complete NP-complete
(Theorem 6) (Theorem 10)
> P_complete
*AF)E k k—1)-EXPSPACE-
(Eki ; | NP-complete (Wivsarem &) (<):om lete
= (Corollary 1) P
(Theorem 11)
Y P, . -complete
*)\ k k+1
(A]; E i ' (Theorem 8)
AFE)* PSPACE NONELEMENTARY
() (Corollary 3) (Corollary 4)

17/41

Summary of Results

HyperLTL Tree Acyclic General
fragment
£ NL-complete NL-complete
L-complete (Theorem 5) (Theorem 9)
(Theorem 1)
* p
E°A 2 PSPACE-complete
Th 11
AE* P-complete ¥ P-complete (Theorem 11)
(Theorem 2) (Theorem 8)
AA NP-complete NP-complete
(Theorem 6) (Theorem 10)
Y P-complete
*AF)E k k—1)-EXPSPACE-
(Eki ; | NP-complete (Theorem) (Szom lete
= (Corollary 1) P
(Theorem 11)
Y P . -complete
*)\ k k+1
(A]; E i ' (Theorem 8)
AFE)* PSPACE NONELEMENTARY
() (Corollary 3) (Corollary 4)

17/41

4. Controller Synthesis
for Trees

18/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

19/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

19/41

Controller Synthesis for Trees

Upper bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

19/41

Controller Synthesis for Trees

Upper bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")"
kE>1
(NE)”

) () (@
@ @) @
w G

|paths| < |states|
trace length < |states|

)
@
©

19/41

Controller Synthesis for Trees

Upper bound

HyperLTL Tree
fragment

E L-complete

(Theorem 1)

logarithmic counters

We only need one path per 3
1. Find path assignment:
» go through all path

E*A assignments for 3* using (1)
()
(i)

N P-complete
AE
(Theorem2) | » Go through all path) @
. *
AN+ assignments for V* to one (i) D
of the J-paths @ @
* A k\ k
(Eki)2 NP-complete 9
= (Corollary 1)
|paths| < |states|
(A*E")F trace length < |states|
k>1
(E)

19/41

Controller Synthesis for Trees

Upper bound

HyperLTL Tree
fragment

We only need one path per 3
1. Find path assignment:
(LT;ZO";;L?;) » go through all path

E*A assignments for 3* using (1)
()
(i)

E*

P-complete logarithmic counters D
(Theorem 2) » Go through all path

AA+ assignments for V* to one (i)
of the J-paths

AE"

O

* A K\ L
(Eki)2 NP-complete @ @
_ (Corollary 1) 2. Verify correctness:
' ' |paths| < |states|
UZE;’“ » check each temporal trace length < [states|
— operator with a
(A*E*)* logarithmic counter

19/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

20/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

20/41

Controller Synthesis for Trees

Upper bound (Vry.3ms.9))

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
" P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")"
kE>1
(A"E™)*

20/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

Upper bound (Vry.3ms.9))

1. We begin by marking all leaves and
proceed in several rounds, in which at least
one mark is removed (/inear rounds).

20/41

Controller Synthesis for Trees

Upper bound (Vry.3ms.9))

1. We begin by marking all leaves and
proceed in several rounds, in which at least

one mark is removed (/inear rounds).

2. In each round, we go through all marked

leaves v1 and instantiate m; with the trace
leading to v1. We then again go through all

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")
kE>1
(NE)”

marked leaves v5 and instantiate w5 with the
trace leading to vy, and check 1 on the pair
of traces (/inear time).

20/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(E°AT) NP-complete
k>2
= (Corollary 1)
(A“E)*
kE>1
(NE)”

Upper bound (Vry.3ms.9))

1. We begin by marking all leaves and
proceed in several rounds, in which at least
one mark is removed (/inear rounds).

2. In each round, we go through all marked
leaves v1 and instantiate m; with the trace
leading to v1. We then again go through all
marked leaves v5 and instantiate w5 with the
trace leading to vy, and check 1 on the pair
of traces (/inear time).

3. If successful for some instantiation of 7o,
we leave v; marked, otherwise we remove
the mark. If no mark was removed by the
end of the round, we terminate.

20/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

21/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

21/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")"
kE>1
(NE)”

Reduction from the horn SAT problem

21/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")"
kE>1
(NE)”

Reduction from the horn SAT problem
(—mx1 Va2V oz Vaa) A (—xe Vaa) A (—xr)

21/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")"
kE>1
(NE)”

Reduction from the horn SAT problem
(—mx1 Va2V oz Vaa) A (—xe Vaa) A (—xr)
= (—x1V-x2 V)N (23 VafVag) A

(—ICL‘Q V xo V £U4) A (—031 V —x1 V J_)

X ={L,z1,22, 23,24, f, T}

21/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")"
kE>1
(NE)”

Reduction from the horn SAT problem
(—mx1 Va2V oz Vaa) A (—xe Vaa) A (—xr)
= (—x1V-x2 V)N (23 VafVag) A

(—ICL‘Q V xo V £U4) A (—031 V —x1 V J_)

X ={L,z1,22, 23,24, f, T}

21/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")"
kE>1
(NE)”

Reduction from the horn SAT problem
(—mx1 Va2V oz Vaa) A (—xe Vaa) A (—xr)

= (—z1 V —@2 \//\(—la?3\/—'f\/

T4

A

(—IZL‘Q V xo V £U4) A (—031 V —x1 V ’

X ={L,z1,22, 23,24, f, T}

21/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek i)2 NP-complete
= (Corollary 1)
(A"E")
kE>1
(NE)”

Reduction from the horn SAT problem
(—mx1 Va2V oz Vaa) A (—xe Vaa) A (—xr)

= (—z1 V —@2 \//\(—lxg\/—lf\/

T4

A

(—IZL‘Q V xo V £U4) A (—031 V —x1 V ’

X ={L,z1,22, 23,24, f, T}

21/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek i)2 NP-complete
= (Corollary 1)
(A"E")
kE>1
(NE)”

Reduction from the horn SAT problem

(—mx1 Va2V oz Vaa) A (—xe Vaa) A (—xr)
= (—z1 V —@2 v A (=z3 V —f V[zd) A

(—IZL‘Q V xo V £U4) A (—031 V —x1 V ’

X ={L,z1,22, 23,24, f, T}

{ne

1))
VAV

{pos}

4

21/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A%\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")
kE>1
(NE)”

Reduction from the horn SAT problem
(—le V —x2 V a3V LU4) VAN (_ICUQ V $4) VAN (_1561)

= (—z1 V —@2 V/\(—lasg\/—'fo4

A

(—IZE‘Q V xo V £U4) A (—031 V —x1 V '

X ={L,z1,22, 23,24, f, T}

21/41

Controller Synthesis for Trees

Lower bound Reduction from the horn SAT problem
(—le V —x2 V a3V LU4) VAN (_ICUQ V $4) VAN (_1561)
HyperLTL Tree = (—x1 V "x2 \/ A (mxs V = f Viza) A
fragment (mx2 V —x2 Vg A (—x1 Vg V '

X ={L,z1,22, 23,24, f, T}

E L-complete

(Theorem 1)
E*A o> —"
AE* P-complete 2 K

AA™
G Cond G D
* A%\ L
(Eki)2 ! NP-complete
= (Corollary 1)
G G D o
(A*E*)F
k>1

Pmap = VW1'372'<>(_'p087r1) A D(_'posﬂQ)
O ((neglﬂ1 © pos.,) V(negy posm)) 21/41

L

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

22/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\ ko
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(AE)

22/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\ ko
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

Upper bound

1. Guess a solution to the synthesis problem
2. Verify the correctness of the solution

(using logarithmic counters for path
assignments and temporal operators as

before)

22/41

Controller Synthesis for Trees

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\ ko
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(AE)

23/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\ ko
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(AE)

23/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\ ko
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(AE)

Reduction from the 3SAT problem

23/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\ ko
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(AE)

Reduction from the 3SAT problem

(mx1V-oxaVas) A (x1VasV-oxy)

23/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\ ko
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(AE)

Reduction from the 3SAT problem

(mx1V-oxaVas) A (x1VasV-oxy)

l
O

23/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\ ko
(Ek 'i)2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(AE)

Reduction from the 3SAT problem

(mx1V-oxaVas) A (x1VasV-oxy)

\

/

A4
Y1

l
O

23/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A *\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")"
kE>1
(AE)

Reduction from the 3SAT problem

(mx1V-oxaVas) A (x1VasV-oxy)

\

/

A4
Y1

-
-
-
-
-
-
“

l

Ve

23/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A *\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")
kE>1
(NE)”

Reduction from the 3SAT problem

(mx1V-oxaVas) A (x1VasV-oxy)

\

/

A4
Y1

l

23/41

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
« P-complete
AE (Theorem 2)
AAT
* A *\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(AE")F,
kE>1
(A'EY)

Reduction from the 3SAT problem

(mx1V-oxaVas) A (x1VasV-oxy)

\ / \ /
A4 A4

23/41

Controller Synthesis for Trees

Lower bound Reduction from the 3SAT problem
HyperLTL Tree (mz1VoweVag) A (1 VoV zy)
fragment \ \/ / \ \/ /

E L-complete

(Theorem 1)

E*A

« P-complete
AE (Theorem 2)
AAT

* A k\ Lk
(Eki)2 NP-complete

= (Corollary 1)

(AEY),
kE>1
(A"E)

Controller Synthesis for Trees

Lower bound Reduction from the 3SAT problem
HyperLTL Tree (mz1VoweVag) A (1 VoV zy)
fragment \ \/ / \ \/ /

(1 | Y2
* r1 = tv L2 = fr
E L-complete /,*"O\~
(Theorem 1) o
E*A
« P-complete
AE (Theorem 2)
AAT

* A K\ K

(E°A) NP-complete
k> 2

= (Corollary 1)

(A*E*)F,
k>1

Controller Synthesis for Trees

Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
« P-complete
AE (Theorem 2)
AAT
* A *\ L
(Ek 'i)2 NP-complete
= (Corollary 1)
(A"E")
kE>1
(NE)”

Reduction from the 3SAT problem

(mx1V-oxaVas) A (x1VasV-oxy)
\ / \ /

NV
(1 | Y2

r1 =1, 22 = f, ,O\

Controller Synthesis for Trees

Lower bound Reduction from the 3SAT problem
HyperLTL Tree (mz1VoweVag) A (1 VoV zy)
fragment \ \/ /

Y1

E>‘< L1 — tv r2 — fr

L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT

* A k\ Lk

(E°A) NP-complete
k> 2

= (Corollary 1)

(A"E")"
kE>1

Controller Synthesis for Trees

Lower bound Reduction from the 3SAT problem
HyperLTL Tree (mz1VoweVag) A (1 VoV zy)
fragment \ \/ /

Y1

E>‘< L1 — tv r2 — fr

L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT

* A k\ Lk

(E°A) NP-complete
k> 2

= (Corollary 1)

(A"E")"
kE>1

Controller Synthesis for Trees

Tree
HyperLTL (Controller '(l'\r/ee.f[Bl:.l 8}
fragment Synthesis) erification
E L-complete
(Theorem 1)
E*A
x P-complete
AE
(Theorem 2) -complete
AAT
* A k\ K
(Eki)2 ’ NP-complete
~ (Corollary 1)
(A*E*)F,
k>1

» (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, The complexity of monitoring

hyperproperties. CSF 2018.

27/41

Controller Synthesis for Trees

Tree
HyperLTL (Controller '(l'\r/ee.f[Bl:.l 8}
fragment Synthesis) erification
E L-complete
(Theorem 1)
E*A
x P-complete
AE
(Theorem 2) -complete
AAT
* A k\ K
(Eki)2 ’ NP-complete
~ (Corollary 1)
(A*E*)F,
k>1

» (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, The complexity of monitoring

hyperproperties. CSF 2018.

27/41

4. Controller Synthesis

for
Acyclic Graphs

28/41

Controller Synthesis for Acyclic Graphs

Upper bound

HyperLTL Acyclic
fragment
£ NL-complete
(Theorem 5)
E*A R4
« Y P-complete
AE (Theorem 8)
NP-complete
+
AA (Theorem 6)
> P_complete
* A ¥\ Kk L
(Eki)2 (Theorem 8)
> P . -complete
**\ k k41
(Al; E)1 (Theorem 8)
Y PSPACE
(A"EY) (Corollary 3)

29/41

Controller Synthesis for Acyclic Graphs

HyperLTL Acyclic
fragment
£ NL-complete
(Theorem 5)
E*A R4
« Y P-complete
AE (Theorem 8)
NP-complete
+
AA (Theorem 6)
> P_complete
* A ¥\ Kk 8
<Eki)2 (Theorem 8)
> P . -complete
* ek k k41
<Al; E)1 (Theorem 8)
s PSPACE
(A"EY) (Corollary 3)

Upper bound

1. Guess a solution to synthesis +
path assignment for leading 3*

2. Verify the remaining formula
(model checking is in 17)

29/41

Controller Synthesis for Acyclic Graphs

Acyclic Aggiléc
HyperLTL (Controller v[!]
fragment Synthesis) (Verification)
E NL-complete
(Theorem 5)
E*A NL-complete
NP-complete
+
AA (Theorem 6)
« Y P-complete »
AE (Theorem 8) [15-complete
Y P_complete
* A\ ke L p
(Ek,i ; (Theorem 8) 2 j-complete
Y P ,-complete
* =\ k k41 P
(A/;, E ; ’ (Theorem 8) I}-complete
e PSPACE
(A"EY) (Corollary 3) PSPACE

30/41

Controller Synthesis for Acyclic Graphs

Acyclic Aggiléc
HyperLTL (Controller v[!]
fragment Synthesis) (Verification)
E NL-complete
(Theorem 5)
E*A NL-complete
NP-complete
+
AA (Theorem 6)
« Y P-complete »
AE (Theorem 8) [15-complete
Y P_complete
* A\ ke L p_
(Ek,i ; (Theorem 8) 2 j-complete
Y P ,-complete
* =\ k k41 P
(A/;, E ; ’ (Theorem 8) Ij-complete
e PSPACE
(A"EY) (Corollary 3) PSPACE

» (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, The complexity of monitoring

hyperproperties. CSF 2018.

30/41

5. Controller Synthesis

for
General Graphs

31/41

Controller Synthesis for General Graphs

Upper bound

HyperLTL General
fragment
£ NL-complete
(Theorem 9)
E°A PSPACE-complete
(Theorem 11)
AE*
NP-complete
+
AA (Theorem 10)
(E*A*)F (k—1)-EXPSPACE-
k> 2 complete
(Theorem 11)
(A"E")
kE>1
(A*E*)* NONELEMENTARY
(Corollary 4)

32/41

Controller Synthesis for General Graphs

HyperLTL General
fragment
£ NL-complete
(Theorem 9)
£ PSPACE-complete
(Theorem 11)
AE*
NP-complete
+
AA (Theorem 10)
(E*A*)F (k—1)-EXPSPACE-
k> 2 complete
(Theorem 11)
(A"E")"
kE>1
(A*E*)* NONELEMENTARY
(Corollary 4)

Upper bound

Synthesis is dominated by
verification

1. Guess a solution to the
synthesis problem

2. Verity

32/41

Controller Synthesis for General Graphs

General General
HyperLTL (Controller V[Bfl_:lal
fragment Synthesis) (Verification)
£ NL-complete
(Theorem 9) NL-complete
NP-complete
+ P
AR (Theorem 10)
E*A
PS(%’(;E;:;mlplI;te PSPACE-complete
AE™
(E*A™)F, (k—1)-EXPSPACE-
k>2 complete (k—1)-EXPSPACE-complete
(Theorem 11)
(A*E*)F,
kE>1
(A'E")” '\I((C)O'\rlfﬂLaEryZNTARY NONELEMENTARY

33/41

Controller Synthesis for General Graphs

General General
HyperLTL (Controller V[B_f'_:lal
fragment Synthesis) (Verification)
£ NL-complete
(Theorem 9) NL-complete
NP-complete
+
AR (Theorem 10)
E*A
PS(%(;E;:;mlplI;te PSPACE-complete
AE™
(E*A™)F, (k—1)-EXPSPACE-
k>2 complete (k—1)-EXPSPACE-complete
(Theorem 11)
(A*E*)F,
k>1
(A'E")” '\I((C)O'\rlfﬂLaEryZNTARY NONELEMENTARY

33/41

5. The Tool HyperQube

» Tzu-Han Hsu, César Sanchez, and Borzoo Bonakdarpour: Bounded Model Checking for
Hyperproperties. TACAS 2021: 94-112

» Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sanchez: HyperQube: A QBF-Based

Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021) 34/41

HyperQube
» HyperQube is a push-button QBF-based bounded model checker for
hyperproperties.

» Unlike the existing similar tools, the QBF-based technique allows
HyperQube to seamlessly deal with quantifier alternations.

Encode initial Satisfaction
NuSMV Model(s) I conditions and
model(s) Parser Witness

Encode transition QBF solver
relation

HyperLTL Formula Dissatisfaction
Formula Translator Unroll model(s) and

with formula Counterexample

(user inputs) w/ pyNuSMV gengbf QuAbs

» Tzu-Han Hsu, César Sanchez, and Borzoo Bonakdarpour: Bounded Model Checking for
Hyperproperties. TACAS 2021: 94-112

» Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sanchez: HyperQube: A QBF-Based

Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021) 35/41

HyperQube Performance

Model K Formula| QBF |sem | states |k parseSMV/ | gengbf | QuAbS | Total
(sec) (sec) | (sec) | (sec)
(0.1 Bakery.3proc 73 SAT | pes 167 |10 0.33 0.84 0.33 1.50 | X
0.2| Bakery.3proc P52 SAT | pes 167 |10 0.32 0.94 0.38 1.64 | X
Symmetry < |0.3| Bakery.3proc || ¢g3 |UNSAT| opt | 167 |10 0.34| 0.84| 0.36 1.54 |/
in HW 1.1| Bakery.3proc Psym1 SAT | pes 167 |10 0.36| 0.85 0.36 1.57 | X
1.2| Bakery.3proc || @om2 | SAT | pes | 167 |10 0.53| 083 048 1.84|x
1.3| Bakery.5proc Psym1 SAT | pes 996 |10 1.73| 11.88 8.17 21.78 | X
(|1.4| Bakery.5proc || @sm2 | SAT | pes | 996 |10 1.52| 12.40| 7.66 21.58 X
/
. C 2.1/ SNARK-bugl Plin SAT | pes |4914/548|18 49.13| 119.90| 429.16 598.19 | X
Linearizability
1 2.2| SNARK-bug?2 Llin SAT pes (3405/664 |30 50.57| 407.54| 327.02 785.13 | X
(13.1|3-Thread incorrect ©NI SAT |h-pes 368 50 0.50 8.61 5.47 14.58 | X
. 3.2| 3-Thread correc UNSAT | h-opt 64 50 0.24 1.45 0.68 2.37 |V
Information-flows e eorrect]| P =
. 4.1 | (R E Ofair SAT |h- 55 15 0.23 0.39 0.28 0.90
Security i || i X
4.2 NRP : ITCO?"TECt Lpfair UNSAT h—Opt 54:]_5 0.24 0.4:1 0.49 1-14: /
N
5.1| Shortest Path o
5 9 Initial State (see Table 5) :au:
' Robustness i
MUtat'.O”{ 6.1/ Mutant omt | SAT |h-pes| 32 |10 0.20| 0.17| 0.09 0.46
Testing

36/41

Synthesis using HyperQube

» Adversarial multi-agent
path planning

Prop. | #adv. | # agents QS | size | h Total[s]
102 | 20 3.78

1 1 v 202 | 40 95.50

302 | 60 1597.70

10% | 20 10.13

2 1 Vv 202 | 40 597.86

302 | 60 5627.61

104 | 20 13.66

Preact 3 1 vYWwv3 | 202 | 40 407.62
302 | 60 5370.74

104 | 20 14.41

1 2 V44 202 | 40 973.98

302 | 60 | 16785.63

104 | 20 17.65

1 3 V333 | 202 | 40 1559.10

302 [60 | 68059.38

(a) Multi-agent vs one
Adversary

(b) One agent vs
Multi-adversary

37/41

Controller Synthesis using HyperQube

» Non-repudiation:

@ =N (Omy) A (O NRR:) N (ONRO,)
(effectiveness)
A@Nacaers an & ax) = (O NRRw) ¢ (O NROL)))
(fairness for A)
AN @A ety an < ax) = (O NRR) & (ONRO)))
(fairness for B)

38/41

Controller Synthesis using HyperQube

» Non-repudiation:

@ =N (Omy) A (O NRR:) N (ONRO,)

(effectiveness)

A@Nacaers an & ax) = (O NRRw) ¢ (O NROL)))
(fairness for A)

AN @A ety an < ax) = (O NRR) & (ONRO)))
(fairness for B)

» We ran HyperQube iteratively, where each round finds a new witness
to the existential quantifier in formula until there is no more such
trace.

» We synthesized the correct non-repudiation protocol in only 0.8s.

38/41

Controller Synthesis using HyperQube

» Non-repudiation:

@ =N (Omy) A (O NRR:) N (ONRO,)
(effectiveness)
A@Nacaers an & ax) = (O NRRw) ¢ (O NROL)))
(fairness for A)
AN @A ety an < ax) = (O NRR) & (ONRO)))
(fairness for B)

» We ran HyperQube iteratively, where each round finds a new witness
to the existential quantifier in formula until there is no more such
trace.

» We synthesized the correct non-repudiation protocol in only 0.8s.

(1) skip until A:m—T; (2) skip until A:NRO—T; (3) T— B:m;
(4) skip until BST:NRR; (5) T— B:NRO:; (6) T— A:NRR;

38/41

6. Conclusion

39/41

Conclusion

» Summary

» Controller synthesis is a promising approach to synthesize secure
systems

» Similar complexity to verification
» Potential for scalable algorithms and tools for relevant fragments

» Future work

» Hyperlogics beyond HyperLTL (e.g., HyperCTL*, FO/SO
hyperlogics)

» Controller synthesis beyond finite state spaces

» Syntax-guided synthesis for hyperproperties

40/41

Thanks!

41/41

	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}
	{\bf Controller Synthesis for Trees}

