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» The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

1 » The recipient of the message obtains an

B NRO evidence.
%>
f \ » The sender of the message obtains an

O g NRR evidence.

S
A B

» The protocol is effective if it is possible to successfully transmit the
message to the recipient and the evidence to both parties.

» The protocol is fair if it is impossible for one party to obtain the

evidence without the other party also receiving the evidence. 1/a1
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How can we synthesize the behavior of T,
ensuring arbitrary behavior for A and B? 5/41
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» Specification of the protocol:

» there should exist a sequence of actions, such that the message
m, the NRR, and the NRO get received, such that

» for all similar executions of A and B, it must still hold that the
NRR gets received if and only if the NRO gets received.

» This is a hyperproperty, i.e., a set of sets of traces.
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2. HyperLTL

M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, C. Sanchez:
Temporal Logics for Hyperproperties. POST 2014: 265-284
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Preliminaries — HyperLTL

» Observational determinism [Zdancewich, Meyers 2003]:

Va7 (iz < ix) — O(ox < o)

» Non-inference [McLean 1994]

V. 3r . O(hiz) AO(lig <> lig A log <> logr)
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Preliminaries — HyperLTL

» Non-repudiation:

e =3dnNr'. (Omy) A(ONRR;) N (O NRO,)
(effectiveness)
A@Nacaers an & ax) = (O NRRw) 4 (O NRO)) )
(fairness for A)
A ((m Auc et Ox < ax) = (O NRRy) & (O NROW/)))
(fairness for B)
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Preliminaries — Plants

> A plantis a tuple P = (S, Sinit, ¢, 1, L), where
» S is a finite set of states:
> Sinit €5 Is the initial state;
> ¢, u C S x § are respectively sets of of controllable and
uncontrollable transitions, where ¢cNu = {}, and
» L :S — X is a labeling function on the states of P.

S1 S92

{a} 0=
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(—mx1 Va2V oz Vaa) A (—xe Vaa) A (—xr)
= (—z1 V —@2 v A (=z3 V —f V[zd) A

(—IZL‘Q V xo V £U4) A (—031 V —x1 V ’

X ={L,z1,22, 23,24, f, T}

{ne

1))
VAV

{pos}
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Lower bound Reduction from the horn SAT problem
(—le V —x2 V a3V LU4) VAN (_ICUQ V $4) VAN (_1561)
HyperLTL Tree = (—x1 V "x2 \/ A (mxs V = f Viza) A
fragment (mx2 V —x2 Vg A (—x1 Vg V '

X ={L,z1,22, 23,24, f, T}

E L-complete

(Theorem 1)
E*A o> —"
AE* P-complete 2 K

AA™
G Cond G D
* A%\ L
(Eki )2 ! NP-complete
= (Corollary 1)
G G D o
(A*E*)F
k>1

Pmap = VW1'372'<>(_'p087r1) A D(_'posﬂQ)
O ((neglﬂ1 © pos.,) V(negy posm)) 21/41
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HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
N P-complete
AE (Theorem 2)
AAT
* A\ ko
(Ek 'i )2 NP-complete
= (Corollary 1)
(A*E*)F
kE>1
(NE)”

Upper bound

1. Guess a solution to the synthesis problem
2. Verify the correctness of the solution

(using logarithmic counters for path
assignments and temporal operators as

before)
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Lower bound

HyperLTL Tree
fragment
E L-complete
(Theorem 1)
E*A
« P-complete
AE (Theorem 2)
AAT
* A *\ L
(Ek 'i )2 NP-complete
= (Corollary 1)
(AE")F,
kE>1
(A'EY)

Reduction from the 3SAT problem
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Lower bound Reduction from the 3SAT problem
HyperLTL Tree (mz1VoweVag) A (1 VoV zy)
fragment \ \/ / \ \/ /

E L-complete

(Theorem 1)

E*A

« P-complete
AE (Theorem 2)
AAT

* A k\ Lk
(Eki )2 NP-complete

= (Corollary 1)

(AEY),
kE>1
(A"E)
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Lower bound Reduction from the 3SAT problem
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(1 | Y2
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E L-complete /,*"O\~
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« P-complete
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AAT
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(E°A) NP-complete
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= (Corollary 1)

(A*E*)F,
k>1
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Lower bound Reduction from the 3SAT problem
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Tree
HyperLTL (Controller '(l'\r/ee.f[Bl:.l 8}
fragment Synthesis) erification
E L-complete
(Theorem 1)
E*A
x P-complete
AE
(Theorem 2) -complete
AAT
* A k\ K
(Eki )2 ’ NP-complete
~ (Corollary 1)
(A*E*)F,
k>1

» (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, The complexity of monitoring

hyperproperties. CSF 2018.
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4. Controller Synthesis

for
Acyclic Graphs
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Controller Synthesis for Acyclic Graphs

Upper bound

HyperLTL Acyclic
fragment
£ NL-complete
(Theorem 5)
E*A R4
« Y P-complete
AE (Theorem 8)
NP-complete
+
AA (Theorem 6)
> P_complete
* A ¥\ Kk L
(Eki )2 (Theorem 8)
> P . -complete
**\ k k41
(Al; E )1 (Theorem 8)
Y PSPACE
(A"EY) (Corollary 3)
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HyperLTL Acyclic
fragment
£ NL-complete
(Theorem 5)
E*A R4
« Y P-complete
AE (Theorem 8)
NP-complete
+
AA (Theorem 6)
> P_complete
* A ¥\ Kk 8
<Eki )2 (Theorem 8)
> P . -complete
* ek k k41
<Al; E )1 (Theorem 8)
s PSPACE
(A"EY) (Corollary 3)

Upper bound

1. Guess a solution to synthesis +
path assignment for leading 3*

2. Verify the remaining formula
(model checking is in 17)
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Controller Synthesis for Acyclic Graphs

Acyclic Aggiléc
HyperLTL (Controller v[ ! ]
fragment Synthesis) (Verification)
E NL-complete
(Theorem 5)
E*A NL-complete
NP-complete
+
AA (Theorem 6)
« Y P-complete »
AE (Theorem 8) [15-complete
Y P_complete
* A\ ke L p
(Ek,i ; (Theorem 8) 2 j-complete
Y P ,-complete
* =\ k k41 P
(A/;, E ; ’ (Theorem 8) I}-complete
e PSPACE
(A"EY) (Corollary 3) PSPACE
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Acyclic Aggiléc
HyperLTL (Controller v[ ! ]
fragment Synthesis) (Verification)
E NL-complete
(Theorem 5)
E*A NL-complete
NP-complete
+
AA (Theorem 6)
« Y P-complete »
AE (Theorem 8) [15-complete
Y P_complete
* A\ ke L p_
(Ek,i ; (Theorem 8) 2 j-complete
Y P ,-complete
* =\ k k41 P
(A/;, E ; ’ (Theorem 8) Ij-complete
e PSPACE
(A"EY) (Corollary 3) PSPACE

» (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, The complexity of monitoring

hyperproperties. CSF 2018.

30/41



5. Controller Synthesis

for
General Graphs
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Controller Synthesis for General Graphs

Upper bound

HyperLTL General
fragment
£ NL-complete
(Theorem 9)
E°A PSPACE-complete
(Theorem 11)
AE*
NP-complete
+
AA (Theorem 10)
(E*A*)F (k—1)-EXPSPACE-
k> 2 complete
(Theorem 11)
(A"E")
kE>1
(A*E*)* NONELEMENTARY
(Corollary 4)
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HyperLTL General
fragment
£ NL-complete
(Theorem 9)
£ PSPACE-complete
(Theorem 11)
AE*
NP-complete
+
AA (Theorem 10)
(E*A*)F (k—1)-EXPSPACE-
k> 2 complete
(Theorem 11)
(A"E")"
kE>1
(A*E*)* NONELEMENTARY
(Corollary 4)

Upper bound

Synthesis is dominated by
verification

1. Guess a solution to the
synthesis problem

2. Verity
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General General
HyperLTL (Controller V[Bfl_:lal
fragment Synthesis) (Verification)
£ NL-complete
(Theorem 9) NL-complete
NP-complete
+ P
AR (Theorem 10)
E*A
PS(%’(;E;:;mlplI;te PSPACE-complete
AE™
(E*A™)F, (k—1)-EXPSPACE-
k>2 complete (k—1)-EXPSPACE-complete
(Theorem 11)
(A*E*)F,
kE>1
(A'E")” '\I((C)O'\rlfﬂLaEryZNTARY NONELEMENTARY
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Controller Synthesis for General Graphs

General General
HyperLTL (Controller V[B_f'_:lal
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£ NL-complete
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5. The Tool HyperQube

» Tzu-Han Hsu, César Sanchez, and Borzoo Bonakdarpour: Bounded Model Checking for
Hyperproperties. TACAS 2021: 94-112

» Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sanchez: HyperQube: A QBF-Based

Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021) 34/41



HyperQube
» HyperQube is a push-button QBF-based bounded model checker for
hyperproperties.

» Unlike the existing similar tools, the QBF-based technique allows
HyperQube to seamlessly deal with quantifier alternations.

Encode initial Satisfaction
NuSMV Model(s) I conditions and
model(s) Parser Witness

Encode transition QBF solver
relation

HyperLTL Formula Dissatisfaction
Formula Translator Unroll model(s) and

with formula Counterexample

(user inputs) w/ pyNuSMV gengbf QuAbs

» Tzu-Han Hsu, César Sanchez, and Borzoo Bonakdarpour: Bounded Model Checking for
Hyperproperties. TACAS 2021: 94-112

» Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sanchez: HyperQube: A QBF-Based

Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021) 35/41



HyperQube Performance

# Model K Formula| QBF |sem | states |k parseSMV/ | gengbf | QuAbS | Total
(sec) (sec) | (sec) | (sec)
(0.1 Bakery.3proc 73 SAT | pes 167 |10 0.33 0.84 0.33 1.50 | X
0.2| Bakery.3proc P52 SAT | pes 167 |10 0.32 0.94 0.38 1.64 | X
Symmetry < |0.3| Bakery.3proc || ¢g3 |UNSAT| opt | 167 |10 0.34| 0.84| 0.36 1.54 |/
in HW 1.1| Bakery.3proc Psym1 SAT | pes 167 |10 0.36| 0.85 0.36 1.57 | X
1.2| Bakery.3proc || @om2 | SAT | pes | 167 |10 0.53| 083 048 1.84|x
1.3| Bakery.5proc Psym1 SAT | pes 996 |10 1.73| 11.88 8.17 21.78 | X
( |1.4| Bakery.5proc || @sm2 | SAT | pes | 996 |10 1.52| 12.40| 7.66 21.58 X
/
. C 2.1/ SNARK-bugl Plin SAT | pes |4914/548|18 49.13| 119.90| 429.16 598.19 | X
Linearizability
1 2.2| SNARK-bug?2 Llin SAT pes (3405/664 |30 50.57| 407.54| 327.02 785.13 | X
(13.1|3-Thread incorrect ©NI SAT |h-pes 368 50 0.50 8.61 5.47 14.58 | X
. 3.2| 3-Thread correc UNSAT | h-opt 64 50 0.24 1.45 0.68 2.37 |V
Information-flows e eorrect ]| P =
. 4.1 | (R E Ofair SAT |h- 55 15 0.23 0.39 0.28 0.90
Security i || i X
4.2 NRP : ITCO?"TECt Lpfair UNSAT h—Opt 54: ]_5 0.24 0.4:1 0.49 1-14: /
N
5.1| Shortest Path o
5 9 Initial State (see Table 5) :au:
' Robustness i
MUtat'.O”{ 6.1/  Mutant omt | SAT |h-pes| 32 |10 0.20| 0.17| 0.09 0.46
Testing
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Synthesis using HyperQube

» Adversarial multi-agent
path planning

Prop. | #adv. | # agents QS | size | h Total[s]
102 | 20 3.78

1 1 v 202 | 40 95.50

302 | 60 1597.70

10% | 20 10.13

2 1 Vv 202 | 40 597.86

302 | 60 5627.61

104 | 20 13.66

Preact 3 1 vYWwv3 | 202 | 40 407.62
302 | 60 5370.74

104 | 20 14.41

1 2 V44 202 | 40 973.98

302 | 60 | 16785.63

104 | 20 17.65

1 3 V333 | 202 | 40 1559.10

302 [ 60 | 68059.38

(a) Multi-agent vs one
Adversary

(b) One agent vs
Multi-adversary
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Controller Synthesis using HyperQube

» Non-repudiation:

@ =N (Omy) A (O NRR:) N (ONRO,)
(effectiveness)
A@Nacaers an & ax) = (O NRRw) ¢ (O NROL)) )
(fairness for A)
AN @A ety an < ax) = (O NRR) & (ONRO)))
(fairness for B)
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@ =N (Omy) A (O NRR:) N (ONRO,)
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A@Nacaers an & ax) = (O NRRw) ¢ (O NROL)) )
(fairness for A)

AN @A ety an < ax) = (O NRR) & (ONRO)))
(fairness for B)

» We ran HyperQube iteratively, where each round finds a new witness
to the existential quantifier in formula until there is no more such
trace.

» We synthesized the correct non-repudiation protocol in only 0.8s.
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@ =N (Omy) A (O NRR:) N (ONRO,)
(effectiveness)
A@Nacaers an & ax) = (O NRRw) ¢ (O NROL)) )
(fairness for A)
AN @A ety an < ax) = (O NRR) & (ONRO)))
(fairness for B)

» We ran HyperQube iteratively, where each round finds a new witness
to the existential quantifier in formula until there is no more such
trace.

» We synthesized the correct non-repudiation protocol in only 0.8s.

(1) skip until A:m—T; (2) skip until A:NRO—T; (3) T— B:m;
(4) skip until BST:NRR; (5) T— B:NRO:; (6) T— A:NRR;
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6. Conclusion
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Conclusion

» Summary

» Controller synthesis is a promising approach to synthesize secure
systems

» Similar complexity to verification
» Potential for scalable algorithms and tools for relevant fragments

» Future work

» Hyperlogics beyond HyperLTL (e.g., HyperCTL*, FO/SO
hyperlogics)

» Controller synthesis beyond finite state spaces

» Syntax-guided synthesis for hyperproperties
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Thanks!
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