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Motivation

I The purpose of a non-repudiation protocol is to allow two parties A
and B to exchange messages through a trusted third party T without
any party being able to deny having participated in the exchange.

I The recipient of the message obtains an
NRO evidence.

I The sender of the message obtains an
NRR evidence.

A B

T

I The protocol is fair if it is impossible for one party to obtain the
evidence without the other party also receiving the evidence.

I The protocol is effective if it is possible to successfully transmit the
message to the recipient and the evidence to both parties.
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Motivation

Actions of participants

How can we synthesize the behavior of T ,
ensuring arbitrary behavior for A and B?
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Motivation

I Specification of the protocol:

I there should exist a sequence of actions, such that the message
m, the NRR, and the NRO get received, such that

I for all similar executions of A and B, it must still hold that the
NRR gets received if and only if the NRO gets received.

I This is a hyperproperty, i.e., a set of sets of traces.
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Informal Problem Statement

(Controllable)

Uncontrollable
Plant P ′

Hyperproperty ϕ

transitions u

Plant P
Controller

Synthesis

Algorithm s.t.
P ′∪u |= ϕ



9/41

2. HyperLTL

M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, C. Sánchez:
Temporal Logics for Hyperproperties. POST 2014: 265-284
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∣∣ ∀π.α ∣∣ ϕ

ϕ ::= aπ
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ ∣∣ ϕ
∣∣ ϕ U ϕ

Π |= ϕ iff (Π + 1) |= ϕ
Π |= ϕ1 U ϕ2 iff for some j ≥ 0 (Π + j) |= ϕ2

and for all 0 ≤ i < j,(Π + i) |= ϕ1

Syntax

Semantics

(W,Π) |= ϕ iff Π |= ϕ
Π |= aπ iff a ∈ σ(p), where (σ, p) = Π(π)
Π |= ϕ1 ∨ ϕ2 iff Π |= ϕ1 or Π |= ϕ2

Π |= ¬ϕ iff Π 6|= ϕ

(W,Π) |= ∃π.α iff for some σ ∈W , (W,Π[π 7→ (σ, 0)]) |= α
(W,Π) |= ∀π.α iff for all σ ∈W , (W,Π[π 7→ (σ, 0)]) |= α



11/41

Preliminaries – HyperLTL



11/41

Preliminaries – HyperLTL

I The meaning of HyperLTL formula

ϕ = ∀π.∀π′. (aπ ↔ aπ′)

is that any pair of traces should agree on the value of a at every
position.



11/41

Preliminaries – HyperLTL

I The meaning of HyperLTL formula

ϕ = ∀π.∀π′. (aπ ↔ aπ′)

is that any pair of traces should agree on the value of a at every
position.

a a a

a a a



11/41

Preliminaries – HyperLTL

I The meaning of HyperLTL formula

ϕ = ∀π.∀π′. (aπ ↔ aπ′)

is that any pair of traces should agree on the value of a at every
position.

aa

a a

a a a

a a a



11/41

Preliminaries – HyperLTL

I The meaning of HyperLTL formula

ϕ = ∀π.∀π′. (aπ ↔ aπ′)

is that any pair of traces should agree on the value of a at every
position.

aa

a a

a a a

a a a



12/41

Preliminaries – HyperLTL



12/41

Preliminaries – HyperLTL

I Observational determinism [Zdancewich, Meyers 2003]:

∀π.∀π′.(iπ ↔ iπ′) → (oπ ↔ oπ′)



12/41

Preliminaries – HyperLTL

I Observational determinism [Zdancewich, Meyers 2003]:

∀π.∀π′.(iπ ↔ iπ′) → (oπ ↔ oπ′)

I Non-inference [McLean 1994]

∀π.∃π′. (hiπ) ∧ (liπ ↔ liπ′ ∧ loπ ↔ loπ′)
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Preliminaries – HyperLTL

I Non-repudiation:

ϕ = ∃π.∀π′. ( mπ) ∧ ( NRRπ) ∧ ( NROπ)
(effectiveness)

∧
(

(
∧
a∈ActA

aπ ⇔ aπ′)⇒
(
( NRRπ′)⇔ ( NROπ′)

))
(fairness for A)

∧
(

(
∧
a∈ActB

aπ ⇔ aπ′)⇒
(
( NRRπ′)⇔ ( NROπ′)

))
(fairness for B)
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Preliminaries – Plants

I A plant is a tuple P = 〈S, sinit , c, u, L〉, where

I S is a finite set of states;
I sinit ∈ S is the initial state;
I c, u ⊆ S × S are respectively sets of of controllable and

uncontrollable transitions, where c ∩ u = {}, and
I L : S → Σ is a labeling function on the states of P.

{a}
sinit

{a}
s1

{b}
s2

{b}
s3
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Plant P ′ = 〈S′, s′init , c′, u′, L′〉

Hyperproperty ϕ

Plant P = 〈S, sinit , c, u, L〉

Controller

Synthesis

Algorithm
s.t.

I S′ = S
I s′init = sinit
I c′ ⊆ c
I u′ = u
I L′ = L
I P ′ |= ϕ

∀∀ (observational determinism)

∀∃ (non-inference)

∃∀ (non-repudiation)
∀∀∃ (generalized non-interference)

tree acyclic general

Session-based and terminating protocols
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2. In each round, we go through all marked
leaves v1 and instantiate π1 with the trace
leading to v1. We then again go through all
marked leaves v2 and instantiate π2 with the
trace leading to v2, and check ψ on the pair
of traces (linear time).

3. If successful for some instantiation of π2,
we leave v1 marked, otherwise we remove
the mark. If no mark was removed by the
end of the round, we terminate.
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1. Guess a solution to the synthesis problem
2. Verify the correctness of the solution

(using logarithmic counters for path
assignments and temporal operators as
before)
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I (BF18) Borzoo Bonakdarpour, Bernd Finkbeiner, The complexity of monitoring
hyperproperties. CSF 2018.
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for

Acyclic Graphs
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k+1-complete
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(A∗E∗)∗
PSPACE

(Corollary 3)

Upper bound

1. Guess a solution to synthesis +
path assignment for leading ∃∗

2. Verify the remaining formula
(model checking is in Πpk)
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5. Controller Synthesis
for

General Graphs
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Upper bound

Synthesis is dominated by
verification
1. Guess a solution to the
synthesis problem

2. Verify
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5. The Tool HyperQube

I Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour: Bounded Model Checking for
Hyperproperties. TACAS 2021: 94-112

I Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sánchez: HyperQube: A QBF-Based
Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021)
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HyperQube

I HyperQube is a push-button QBF-based bounded model checker for
hyperproperties.

I Unlike the existing similar tools, the QBF-based technique allows
HyperQube to seamlessly deal with quantifier alternations.

(user inputs) w/ pyNuSMV genqbf QuAbs

NuSMV
model(s)

HyperLTL
Formula

Model(s)
Parser

Formula
Translator

Encode initial
conditions

Encode transition
relation

Unroll model(s)
with formula

QBF solver

Satisfaction
and

Witness

Dissatisfaction
and

Counterexample

I Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour: Bounded Model Checking for
Hyperproperties. TACAS 2021: 94-112

I Tzu-Han Hsu, Borzoo Bonakdarpour, and César Sánchez: HyperQube: A QBF-Based
Bounded Model Checker for Hyperproperties. CoRR abs/2109.12989 (2021)
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HyperQube Performance

Symmetry

Linearizability

Information-flow

Security

Testing
Mutation

in HW
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Synthesis using HyperQube

I Adversarial multi-agent
path planning
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Controller Synthesis using HyperQube
I Non-repudiation:

ϕ = ∃π.∀π′. ( mπ) ∧ ( NRRπ) ∧ ( NROπ)
(effectiveness)

∧
(

(
∧
a∈ActA

aπ ⇔ aπ′)⇒
(
( NRRπ′)⇔ ( NROπ′)

))
(fairness for A)

∧
(

(
∧
a∈ActB

aπ ⇔ aπ′)⇒
(
( NRRπ′)⇔ ( NROπ′)

))
(fairness for B)
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Controller Synthesis using HyperQube

I We ran HyperQube iteratively, where each round finds a new witness
to the existential quantifier in formula until there is no more such
trace.

I We synthesized the correct non-repudiation protocol in only 0.8s.

I Non-repudiation:

ϕ = ∃π.∀π′. ( mπ) ∧ ( NRRπ) ∧ ( NROπ)
(effectiveness)
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∧
(

(
∧
a∈ActB

aπ ⇔ aπ′)⇒
(
( NRRπ′)⇔ ( NROπ′)

))
(fairness for B)
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Controller Synthesis using HyperQube

(1) skip until A:m→T ; (2) skip until A:NRO→T ; (3) T→B:m;
(4) skip until B→T :NRR; (5) T→B:NRO ; (6) T→A:NRR;

I We ran HyperQube iteratively, where each round finds a new witness
to the existential quantifier in formula until there is no more such
trace.

I We synthesized the correct non-repudiation protocol in only 0.8s.

I Non-repudiation:

ϕ = ∃π.∀π′. ( mπ) ∧ ( NRRπ) ∧ ( NROπ)
(effectiveness)

∧
(

(
∧
a∈ActA

aπ ⇔ aπ′)⇒
(
( NRRπ′)⇔ ( NROπ′)

))
(fairness for A)

∧
(

(
∧
a∈ActB

aπ ⇔ aπ′)⇒
(
( NRRπ′)⇔ ( NROπ′)

))
(fairness for B)
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6. Conclusion
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Conclusion

I Summary

I Controller synthesis is a promising approach to synthesize secure
systems

I Similar complexity to verification
I Potential for scalable algorithms and tools for relevant fragments

I Future work
I Hyperlogics beyond HyperLTL (e.g., HyperCTL*, FO/SO

hyperlogics)
I Controller synthesis beyond finite state spaces
I Syntax-guided synthesis for hyperproperties
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Thanks!
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