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Growing Use of Machine Learning/Artificial Intelligence in            
Safety-Critical Autonomous & Semi-Autonomous Systems 
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Growing Concerns about Safety:
• Numerous papers showing that Deep Neural Networks can be easily fooled
• Accidents, including some fatal, involving potential failure of AI/ML-based 

perception systems in self-driving cars

Source: gminsights.com



Can we address the Design & Verification Challenges 
of AI/ML-Based Autonomy                                                  

with Formal Methods?
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Example: Automatic Emergency Braking System (AEBS) 
using Deep Learning for Perception
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Controller Vehicle 
(Plant)

Environment

Sensor Input

• Goal: Brake when an obstacle is near, to maintain a minimum safety distance
• Modeling: Closed-Loop system modeled in a software-in-the-loop simulator

(Matlab/Simulink, Udacity, Webots, CARLA, …)
• Perception: Object detection/classification system based on deep neural networks

• Inception-v3, AlexNet, … trained on ImageNet
• squeezeDet, Yolo, … trained on KITTI

Deep Learning-Based Object Detection

[Dreossi, Donze, Seshia, “Compositional Falsification of Cyber-Physical Systems with Machine Learning 
Components”, NASA Formal Methods (NFM), May 2017.]



Challenges for Verified AI  
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System S
Environment E
Specification ϕ

YES [+ proof]
Does S || E 
satisfy ϕ?

NO 
[+ counterexample]

S. A. Seshia, D. Sadigh, S. S. Sastry.  
Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.

Design Correct-by-Construction?

Need to Search Very 
High-Dimensional Input 
and State Spaces

https://arxiv.org/abs/1606.08514


Need Principles for Verified AI

Challenges
1. Environment (incl.    

Human) Modeling
2. Formal Specification

3. Learning Systems 
Representation

4. Scalable Training,    
Testing, Verification

5. Design for Correctness

Principles

?
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S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016. 
https://arxiv.org/abs/1606.08514.

http://learnverify.org/VerifiedAI



Outline

• Challenges for Formal Specification of AI/ML Systems
• Component-Level Specification
• Robustness 
• System-Level Specification
• Environment Modeling
• Principles for Verified AI 
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Challenges for Formal Specification 
of AI/ML Systems
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Challenge 1: Hard to Formalize Tasks
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Many of the impactful applications of ML/Deep Learning are in Perceptual Tasks

How do you specify “a car”?

What Specifications are Meaningful for Hard-to-Formalize Tasks?



Challenge 2: Boolean vs. Quantitative Specifications
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Do you speak 
Formal Methods? 
(logic, automata, 
etc.)

Do you speak 
Machine Learning? 
(cost functions, risk 
reward, etc.)

BOOLEAN QUANTITATIVE

• More Composable
• Fit with Formal Tools

• More Flexible
• Fit with Optimization

How do we bridge the gap?



Challenge 3: Data vs. Formal Specification 
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MACHINE LEARNING FORMAL METHODS

ϕ1 ∨ (ϕ2 ∧ ϕ3) 

How do we bridge the gap?



What Properties must we Verify? 
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Taxonomy of Properties: Multiple Dimensions

1. System-level vs. Component-level

2. Trace Properties vs. HyperProperties

3. Boolean vs. Quantitative

4. Purpose: Robustness, Safety, Fairness, etc.
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System-Level, Boolean Trace Property
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Controller Plant

Environment

DNN-Based Perception



Component-Level, Boolean Trace Property
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Plant

Environment

ML-Based End-to-End Control

For a given x1, ε, δ and for all x2:

x y



Component-Level, Boolean HyperProperty
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Loan 
Application

(feature 
vector)

Loan 
Rating

DNN-based Loan Decision Risk Rating System

fw
x



System-Level, Quantitative Trace/Hyper Property
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Cart-pole Balancing 
[Barto et al., ‘83] (from OpenAI Gym)

Reward for every finite-time horizon trace τ

For the set of all traces T

Reward r(t)=1 each step it is upright



• System Level (for ML based systems)
– Similar to other systems (safety, liveness, stability, etc.)

• Component Level (for ML models as components)
– Robustness: local vs. global,  syntactic vs. semantic
– Input-Output Relations
– Monotonicity
– Fairness
– Coverage
– Semantic Invariance (e.g. output invariant to geometric transformations)
– Distributional Assumptions & Corresponding Guarantees
– …

• Properties of ML Algorithms: e.g., for Stochastic Gradient Descent: “stochastic 
backpropagation procedure yields unbiased estimates of the true mathematical gradients” [Selsam et al, ‘17]
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[S. A. Seshia, et al., “Formal Specification for Deep Neural Networks”, ATVA 2018]
Formal Specification for ML: Classification by Purpose



Fairness of ML Models: 3 Broad Flavors

• Individual / Similarity-Based
– View of ML model operating on individual inputs
– E.g., Similar inputs mapped to similar outputs  (cf. robustness)

• Group / Population-Based
– View of ML model operating on population of data
– E.g., Probability of getting a particular output is independent of certain 

features

• Counterfactual
– Decision of ML model same in actual world and a counterfactual world
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[S. A. Seshia, et al., “Formal Specification for Deep Neural Networks”, ATVA 2018]



Robustness
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Robustness to Adversarial Inputs/Mutations
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(Local) Robustness – Adversarial ML Test-Time Attacks

• Given a specific input x to an ML model (e.g. deep neural network), 
find a small perturbation x* of that input that produces an 
“incorrect” output

• If no such perturbation is possible, the ML model is robust (to the 
test-time attack)
– Locally robust around input x

• Problem: No uniform way to define adversary or attacks!

[see, for example, Goodfellow et al, article in CACM 2018]
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(Local) Robustness – A General Formulation

[Dreossi, Ghosh, Sangiovanni-Vincentelli, Seshia, “A General Formalization of Robustness for Deep Neural Networks”, VNN’19]
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Only “Valid” Perturbations allowed

Perturb within a specified “distance”

Adversarial goal

DECISION PROBLEM FORMULATION



(Local) Robustness – A General Formulation

[Dreossi, Ghosh, Sangiovanni-Vincentelli, Seshia, “A General Formalization of Robustness for Deep Neural Networks”, VNN’19]
S. A. Seshia

DECISION PROBLEM OPTIMIZATION FORMULATION

A(x, x’, β)



Ex 1: Minimum Perturbation, Targeted Attacks
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DECISION PROBLEM:

OPTIMIZATION PROBLEM:



Ex 2: Minimum Perturbation, Untargeted Attacks
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DECISION PROBLEM:

OPTIMIZATION PROBLEM:



Ex 3: Maximum Loss, Untargeted Attacks
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DECISION PROBLEM:

OPTIMIZATION PROBLEM:



Ex 4: Adversarial Examples Robust to Transformations
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DECISION PROBLEM:

OPTIMIZATION PROBLEM:



Ex 5: Breaking Input-Output Relations
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DECISION PROBLEM:
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[Dreossi, Ghosh, Sangiovanni-Vincentelli, Seshia, “A General Formalization of Robustness for Deep Neural Networks”, VNN’19]



Robustness to Adversarial Inputs/Mutations
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“Street sign” “Bird house”

Mutation

[Huang et al., 2016]

Q1: Can these mutations occur in 
practice in the environment?

Q2: What about “big” mutations in 
pixel space producing “equivalent” i/p?

Q3: What is the impact of such an 
adversarial input on the system
containing the NN as a component?



Semantic Adversarial Analysis / Semantic Robustness
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Semantic 
Feature 
Space S

Renderer R
Concrete 

Input Space  
X

DNN f Output Space  
Y

Semantic Robustness:
[ s ≈S s’ ∧ R(s) = x ∧ R(s’) = x’ ]  ⇒ f(x) ≈Y f(x’) 

Can apply techniques from standard adversarial analysis, provided R is differentiable

[S. A. Seshia, et al., “Formal Specification for Deep Neural Networks”, ATVA 2018.]



Sample Result for Semantic Adversarial Analysis

S. A. Seshia 33

SqueezeDet NN for object 
detection on Virtual KITTI 
data set

Uses 3D-SDN 
differentiable renderer 
[Yao et al. NeurIPS’18] 
and FGSM on semantic 
feature space

[Jain, Wu, Chandrasekharan, Chen, Jang, Jha, Seshia, 2019]



Robustness to Adversarial Inputs/Mutations
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“Street sign” “Bird house”

Mutation

[Huang et al., 2016]

Q1: Can these mutations occur in 
practice in the environment?

Q2: What about “big” mutations in 
pixel space producing “equivalent” i/p?

Q3: What is the impact of such an 
adversarial input on the system
containing the NN as a component?



Insight: Start with System-Level Specification
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“Verify the Deep Neural Network Object Detector”

“Verify the System containing the Deep Neural Network”

Formally Specify the End-to-End Behavior of the System

Temporal Logic: G (dist(ego vehicle, env object) > ∆)

Property does 
not mention 

inputs/outputs 
of the neural 

networkController Plant

Environment

DNN-Based Perception

Recall AEBS 
Example



Compositional Falsification

Principles: 
(1) Abstraction (replace DNN by simpler abstract function), 

and
(2) Compositional Reasoning (component-level adversarial 

analysis guided by system-level analysis)

S. A. Seshia 36

T. Dreossi, A. Donze, and S. A. Seshia. Compositional Falsification of Cyber-Physical Systems with 
Machine Learning Components, In NASA Formal Methods Symposium, May 2017. 
(Extended version: Journal of Automated Reasoning, 2019.)



Result on AEBS Example
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Inception-v3
Neural 

Network
(pre-trained on 
ImageNet using 

TensorFlow)

Misclassifications

This misclassification not of concern

[Dreossi, Donze, Seshia, NFM 2017; J. Automated Reasoning 2019]

Sample image

S. A. Seshia



Result on AEBS Example
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Inception-v3
Neural 

Network
(pre-trained on 
ImageNet using 

TensorFlow)

Misclassifications

Corner case
Image  

But this one is a real 
hazard!

[Dreossi, Donze, Seshia, NFM 2017; J. Automated Reasoning 2019]S. A. Seshia



Revisiting the Challenges
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Challenge 1: Hard to Formalize Tasks
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Many of the impactful applications of ML/Deep Learning are in Perceptual Tasks

How do you specify “a car”?

What Specifications are Meaningful for Hard-to-Formalize Tasks?

Principle: Start with Formalizable System-Level Specification

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016. 
https://arxiv.org/abs/1606.08514.



Challenge 2: Boolean vs. Quantitative Specifications
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Do you speak 
Formal Methods? 
(logic, automata, 
etc.)

Do you speak 
Machine Learning? 
(cost functions, risk 
reward, etc.)

BOOLEAN QUANTITATIVE

HYBRID
• More Composable
• Fit with Formal Tools

• More Flexible
• Fit with Optimization

Principle: Employ Hybrid Boolean-Quantitative Formalisms

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016. 
https://arxiv.org/abs/1606.08514.

E.g., MTL, STL, Rulebooks, etc.



Challenge 3: Data vs. Formal Specification 
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MACHINE LEARNING FORMAL METHODS

ϕ1 ∨ (ϕ2 ∧ ϕ3) 

How do we bridge the gap?

Principle: Use Specification Mining

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016. 
https://arxiv.org/abs/1606.08514.

E.g., [Vazquez-Chanlatte et al. ‘17, ‘18; 
Puranic et al., 21; Belta et al., ‘17, …] 



Specifying Environments / Distributional Assumptions
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SCENIC: Environment Modeling and Data Generation
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• Scenic is a probabilistic programming language defining distributions over scenes/scenarios
• Use cases: data generation, test generation, verification, debugging, design exploration, etc.

[D. Fremont et al., “Scenic: A Language for Scenario Specification and Scene Generation”, TR 2018, PLDI 2019.]

Image 
created 
with 
GTA-V

Video 
created 
with 
CARLA

Example: Badly-parked car



VERIFAI: A Toolkit for the Design and Analysis of AI-Based 
Systems [CAV 2019] https://github.com/BerkeleyLearnVerify/VerifAI

Semantic 
Feature 
Space

Search Monitor

Simulator

Error 
Analysis

System

Environment 
(Scenic pgm)

Specification

Falsification

Data Augmentation/ Retraining

Parameter
Synthesis

Fuzz Testing

Failure Analysis

VERIFICATION

DEBUGGING

SYNTHESIS

AUTONOMOUS DRIVING AIRCRAFTROBOTICS
45

Multi-modal: temporal 
logic, obj funcs, …

https://github.com/BerkeleyLearnVerify/VerifAI


Conclusion: Towards Verified AI/ML based Autonomy
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S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016. 
https://arxiv.org/abs/1606.08514.

Challenges
1. Environment (incl.    

Human) Modeling
2. Specification

3. Learning Systems 
Complexity

4. Efficient Training,    
Testing, Verification

5. Design for Correctness

Principles

Data-Driven, Introspective, Probabilistic 
Modeling
Start with System-Level Spec; Hybrid 
Boolean-Quant; Spec. Mining
Abstraction, Semantic Representation, 
and Explanations
Compositional Analysis and Semantics-
directed Search/Training 
Oracle-Guided Inductive Synthesis; 
Run-Time Assurance

Exciting Times Ahead!!!  Thank you!
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