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Growing Use of Machine Learning/Artificial Intelligence in
Safety-Critical Autonomous & Semi-Autonomous Systems

Global Market Insigh '

ARTIFICIAL INTELLIGENCE (Al) IN AUTOMOTIVE MARKET

Semi-autonomous vehicles
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Machine Learning Data Mining Deep learning AFAC market CAGR
(2020-26): >40%

technology segment segment

Source: gminsights.com

Growing Concerns about Safety:
* Numerous papers showing that Deep Neural Networks can be easily fooled

* Accidents, including some fatal, involving potential failure of Al/ML-based
perception systems in self-driving cars
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Can we address the Desigh & Verification Challenges
of Al/ML-Based Autonomy
with Formal Methods?



Example: Automatic Emergency Braking System (AEBS)
using Deep Learning for Perception

a

Environment

\ 4

Controller

a

Deep Learning-Based Object Detection

* Goal: Brake when an obstacle is near, to maintain a minimum safety distance
 Modeling: Closed-Loop system modeled in a software-in-the-loop simulator
(Matlab/Simulink, Udacity, Webots, CARLA, ...)
* Perception: Object detection/classification system based on deep neural networks
* Inception-v3, AlexNet, ... trained on ImageNet
* squeezeDet, Yolo, ... trained on KITTI

[Dreossi, Donze, Seshia, “Compositional Falsification of Cyber-Physical Systems with Machine Learning
S. A Seshia Components”, NASA Formal Methods (NFM), May 2017.] 4



Challenges for Verified Al

S. A. Seshia, D. Sadigh, S. S. Sastry.

Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.

System S
Environment E —

Specification ¢ —>

S. A. Seshia

YES [+ proof]
DoesS || E
satisfy ¢?
NO
Need to Search Very [+ counterexample]

High-Dimensional Input
and State Spaces

Design Correct-by-Construction?


https://arxiv.org/abs/1606.08514

Need Principles for Verified Al

Challenges Principles
1. Environment (incl. —_—
Human) Modeling
2. Formal Specification —
3. Learning Systems ?
Representation *
4. Scalable Training, —_—
Testing, Verification

5. Design for Correctness

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016.  http://learnverify.org/VerifiedAl
https://arxiv.org/abs/1606.08514.
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Outline

e Challenges for Formal Specification of Al/ML Systems
e Component-Level Specification

e Robustness

e System-Level Specification

e Environment Modeling

e Principles for Verified Al

S. A. Seshia



Challenges for Formal Specification
of Al/ML Systems
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Challenge 1: Hard to Formalize Tasks

Many of the impactful applications of ML/Deep Learning are in Perceptual Tasks

How do you specify “a car”?

What Specifications are Meaningful for Hard-to-Formalize Tasks?

S. A. Seshia



Challenge 2: Boolean vs. Quantitative Specifications

Do you speak
Machine Learning?
(cost functions, risk
reward, etc.)

Do you speak
Formal Methods?
(logic, automata,
etc.)

BOOLEAN QUANTITATIVE

« More Composable How do we bridge the gap? * More Flexible

* Fit with Formal Tools * Fitwith Optimization

S. A. Seshia



Challenge 3: Data vs. Formal Specification

MACHINE LEARNING FORMAL METHODS

M 0, V (0, A 05)

How do we bridge the gap?

S. A. Seshia
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What Properties must we Verify?

12



Taxonomy of Properties: Multiple Dimensions

1. System-level vs. Component-level
2. Trace Properties vs. HyperProperties
3. Boolean vs. Quantitative

4. Purpose: Robustness, Safety, Fairness, etc.

S. A. Seshia
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System-Level, Boolean Trace Property

S. A. Seshia

Environment

Controller

G |AV_moving = dist(XaAv ., Xenv) > A

14



Component-Level, Boolean Trace Property

S. A. Seshia

Environment

For a given x4, €, 0 and for all x,:

di(x1,x9) <€ = do(y1,y2) <6

15



Component-Level, Boolean HyperProperty

Loan )

Application — , 5 ooo0|— Loan
(feature Ay 5 Rating
vector)

DNN-based Loan Decision Risk Rating System

VX17X2-X1,sal < X2 sal — fW(Xl) < fW(X2)

S. A. Seshia
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System-Level, Quantitative Trace/Hyper Property

Reward r(¢)=1 each step it 1s upright

Reward for every finite-time horizon trace t
Bl - -

1
Cart-pole Balancing RT (T) — S:t—l T(t)

[Barto et al., ‘83] (from OpenAl Gym)

For the set of all traces 7

RA(T) = inf.er R (T)

S. A. Seshia 17



Formal Specification for ML: Classification by Purpose

[S. A. Seshia, et al., "Formal Specification for Deep Neural Networks”, ATVA 2018]
e System Level (for ML based systems)

— Similar to other systems (safety, liveness, stability, etc.)

e Component Level (for ML models as components)
— Robustness: local vs. global, syntactic vs. semantic
— Input-Output Relations
— Monotonicity
— Fairness
— Coverage
— Semantic Invariance (e.g. output invariant to geometric transformations)
— Distributional Assumptions & Corresponding Guarantees

* Properties of ML Algorithms: e.g., for Stochastic Gradient Descent: “stochastic

i backpropagation procedure yields unbiased estimates of the true mathematical gradients” [Selsam et al, ‘17]
S. A. Seshia



Fairness of ML Models: 3 Broad Flavors
[S. A. Seshia, et al., "Formal Specification for Deep Neural Networks”, ATVA 2018]

e Individual / Similarity-Based
— View of ML model operating on individual inputs
— E.g., Similar inputs mapped to similar outputs (cf. robustness)

e Group / Population-Based
— View of ML model operating on population of data

— E.g., Probability of getting a particular output is independent of certain
features

e Counterfactual

— Decision of ML model same in actual world and a counterfactual world

S. A. Seshia 19
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Robustness
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Robustness to Adversarial Inputs/Mutations

input image classified as
A7 STOP

. S

adversarial noise

adversarial image 5 o
g misclassified as

z sign(V,.J (6, ,y)) o

ESigIl(V;J(B, i, y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Explaining and Harnessing Adversarial Examples, Goodfellow et. al

B classified as turtle [l classified as rifle

M classified as other correct +distort ostrich correct +distort ostrich

Intriguing Properties of Neural Networks, Szegedy et. al
S. A. Seshia



(Local) Robustness — Adversarial ML Test-Time Attacks

e Given a specific input x to an ML model (e.g. deep neural network),
find a small perturbation x* of that input that produces an
“incorrect” output

e |f no such perturbation is possible, the ML model is robust (to the
test-time attack)

— Locally robust around input x

e Problem: No uniform way to define adversary or attacks!

[see, for example, Goodfellow et al, article in CACM 2018]

S. A. Seshia 22



(Local) Robustness — A General Formulation

Given: Input x € X DECISION PROBLEM FORMULATION

NN f: X —>Y
Find: Adversarial example x* which satisfy,
(1) Admissibility constraint: x* € X - Only “Valid" Perturbations allowed
(2) Distance constraint: D(u(x,x*%),a) « Perturb within a specified "distance”
(3) Target behavior constraint: A(x, x*, f)« Adversarial goal

[Dreossi, Ghosh, Sangiovanni-Vincentelli, Seshia, "A General Formalization of Robustness for Deep Neural Networks”, VNN'19]

S. A. Seshia



(Local) Robustness — A General Formulation

DECISION PROBLEM OPTIMIZATION FORMULATION

Given: Input x € X Minimizing Perturbation
W AT x* = argmin a s.t. pux,x) <a
Find: Adversarial example x* which satisfy, yeXx ’ —
(1) Admissibility constraint: x* € X A(x’ X 'B)
(2) Distance constraint: D(u(x,x*),a)
(3) Target behavior constraint: A(x,x*, ) Maximizing Loss
v = argmax f st L(f), f(x) 2 f
x'eX
p(x,x') < a

[Dreossi, Ghosh, Sangiovanni-Vincentelli, Seshia, "A General Formalization of Robustness for Deep Neural Networks", VNN'19]
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Ex 1: Minimum Perturbation, Targeted Attacks

DECISION PROBLEM:
xFi=x+reX

D(u(x,x*),a) := ||r]|, < a
A, x*,p) =f(x*) =y (y € Y\f(x))

OPTIMIZATION PROBLEM:

X* = argmin
!
x'eX
I —
st. x =x+4r
JIx') =
y Intriguing Properties of Neural Networks, Szegedy et. al
Explaining and Harnessing Adversarial Examples, Goodfellow et. al (FGSM-Fast gradient sign method)
p E { 032 . C)O } Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks, Papernot et. al
Towards Evaluating the Robustness of Neural Networks, Carlini and Wagner

The Limitations of Deep Learning in Adversarial Settings, Papernot et. al (JSMA- Jacobian based Saliency Map Attack)

S. A. Seshia 25



Ex 2: Minimum Perturbation, Untargeted Attacks

DECISION PROBLEM:
x*Fi=x+reX

D(u(x,x%). @) := |Irll, < @
Ax,x%, f) =S{f0¥) # fx)))

OPTIMIZATION PROBLEM:

—
J(x®) # fx)

X* = argmin « X y
xeX
st. xX'=x+4+7r
], <a

J(xX') # f(x)

0 2 DeepFool: a simple and accurate method to fool deep neural networks , Moosavi-Dezfooli et. al
p e { o i O } Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples, Athalye et. al
Towards Fast Computation of Certified Robustness for ReLU Networks, Weng et. al

S. A. Seshia 26



Ex 3: Maximum Loss, Untargeted Attacks

DECISION PROBLEM:

x*i=x+relX g
D(u(x,x*),a) == ||r||l, < a ;
A(x,x*,B) := L(0, x*,y) > f i
OPTIMIZATION PROBLEM: i._.
| €
X* = argmax g x >
xeX
st. xX'=x+r
17, < @

LO.x,y) > p

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et. al

S. A. Seshia
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Ex 4: Adversarial Examples Robust to Transformations

DECISION PROBLEM:
Define : Set of transformations T
X* must remain adversarial when transformed t(x*)Vt € T
xti=x+rekX
D(u(x.x%), @) := E,eqld(t(x). 1(x*))] < a
A(x, x*, f) := Eerl log P(y,| 1(x*))] > p

OPTIMIZATION PROBLEM:

X* = argmax S
xXeX
st. X' =x+7r

[EreT[d(r(-x)s r(x*))] S (04
Ererl log P(y, | t(x*))] > p

Synthesizing Robust Adversarial Examples, Athalye et. al

S. A. Seshia
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Ex 5: Breaking Input-Output Relations

DECISION PROBLEM:

D(pux,x*),a) :=x* € §,(x) C X

S. A. Seshia

Vx'e s, (x) = f(x) €S, (f(x)

x*Fi=x4+relX

A(xv xﬂ:a ﬁ) ::f(xﬂ:) g Saur(f(x))

A Dual Approach to Scalable Verification of Deep Networks, Dvijotham et. al
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, Katz et. al
Safety Verification of Deep Neural Networks, Huang et. al

Output Range Analysis for Deep Feedforward Neural Networks, Dutta et. al
Reachability Analysis of Deep Neural Networks with Provable Guarantees, Ruan et. al

29



Admissibility Constraint

Distance Constraint

Target Constraint

Adversary Type =
P ¥t € X D(u(x. x*). a) A(x,x*, )
Minimum Perturbation Adversary, ko ¥} —
Targeted Attacks x*=x+rekX ”r”P sa f(x ) )
Minimum Perturbation Adversary, i — o _
Untargeted Attacks X x+treX ”r”P S a f(x ) _—,éf(x)

Maximize Loss Adversary,
Untargeted Attacks

x*=x+rekX

Ml <a=e

L(B.x*%,y) > f

Robust Adversarial Examples

xt=x4+relX

Eerld(tx). t(x*))| Sa=¢€

Ferllog P(y, | 1(x%))] >

Input Output Relations

xt=x4+relX

x* e S (x)

JOF) & Spia(f(20))

Black-Box Transferable Attacks

x*F=x+rekX

7l < @

fvub(x:k) — y*ﬁ'ub(x:k) 71— f.;'ub('x)
f;ub(x:k} # f;ub(x) - f (.X:E:) # f (-1)

Neuron Coverage

xFe X

x* e {yx,x+r)}

H(xX) = .. = filx) = filx®) # f(x™)
F,(x*) > B

[Dreossi, Ghosh, Sangiovanni-Vincentelli, Seshia, "A General Formalization of Robustness for Deep Neural Networks", VNN'19]

S. A. Seshia
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Robustness to Adversarial Inputs/Mutations

Q3: What is the impact of such an + -
adversarial input on the system e L
containing the NN as a component?

adversarial image

¥
Q1: Can these mutations occur in ~ Mutation
practice in the environment?
_ ‘s n : : “Street sign” “Bird house”
Q2: What about “big” mutations in Huang et al., 2016]
H . o . Y 7 ?
pixel space producing “equivalent” i/p- — o

STOP

misclassified as

YIELD

Slides by Andrej Karpathy

S. A. Seshia




Semantic Adversarial Analysis / Semantic Robustness

Concrete
Input Space
X

Semantic
Feature
Space S

DNN f Outpu;c/Space

— [ Renderer R]

Semantic Robustness:
[s=s S AR(ES)=xAR(S)=X"] = flx) =, f(X)

Can apply techniques from standard adversarial analysis, provided R is differentiable

[S. A. Seshia, et al., “Formal Specification for Deep Neural Networks”, ATVA 2018.]
S. A. Seshia 32



Sample Result for Semantic Adversarial Analysis

SqueezeDet NN for object
detection on Virtual KITTI
data set

Uses 3D-SDN
differentiable renderer
[Yao et al. NeurlPS’18]
and FGSM on semantic
feature space

[Jain, Wu, Chandrasekharan, Chen, Jang, Jha, Seshia, 2019]

S. A. Seshia



Robustness to Adversarial Inputs/Mutations

YV
Q1: Can these mutations occur in ~ Mutation
practice in the environment?
_ ‘s n : : “Street sign” “Bird house”
Q2: What about “big” mutations in Huang et al., 2016]
pixel space producing “equivalent” i/p?

input image classified as

STOP

Q3: What is the impact of such an + -
adversarial input on the system e e
containing the NN as a component?

adversarial image ) .
; misclassified as

YIELD

Slides by Andrej Karpathy

S. A. Seshia



Insight: Start with System-Level Specification

Recall AEBS
Example

S. A. Seshia

x “Verify the Deep Neural Network Object Detector”

J “Verify the System containing the Deep Neural Network”

Formally Specify the End-to-End Behavior of the System

Temporal Logic: G (dist(ego vehicle, env object) > A)

Environment \
&

Controller

Property does
not mention
inputs/outputs
of the neural
network

35



Compositional Falsification

Principles:
(1) Abstraction (replace DNN by simpler abstract function),
and
(2) Compositional Reasoning (component-level adversarial
analysis guided by system-level analysis)

T. Dreossi, A. Donze, and S. A. Seshia. Compositional Falsification of Cyber-Physical Systems with
Machine Learning Components, In NASA Formal Methods Symposium, May 2017.
(Extended version: Journal of Automated Reasoning, 2019.)

S. A. Seshia
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Result on AEBS Example

Inception-v3
Neural

Network
(pre-trained on
ImageNet using

TensorFlow)

Sample image

S. A. Seshia

brightness
I

— ]
-

This misclassification not of concern

Misclassifications

o b g g o »
- e B e
l-____."\- 4 "\."“ :_..I" &
E )
o \___.r' s '-\.""
i e ] A i
* * . e
X 3 g x ¥ b
e E e g #
= = 2 =
e e E e A
b o .-f‘:__.-i'* _‘_:.-r- -
x e s e F w
. - o !
.-"""x ":‘“"‘:..-' & o
b
g
. = ___.-.-" - il &
. # W wa T e
w " - =
-~ .-___,-' -
o = w i o
#
1 1
= = e

[Dreossi, Donze, Seshia, NFM 2017; J. Automated Reasoning 2019]
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Result on AEBS Example

Misclassifications

Inception-v3 | _
Neural < Aot
Network Y] O o e e
na . . o 0 'L T -

(pre-trained on
ImageNet using
TensorFlow)

o
o
B

55

d
e

—_

brightness
g-i A..l

f_f’ But this one is a real
Corner case f. D4 hazard!
Image ER P
> 0.2 . - -.__;.._.-""f =
i W

S. A. Seshia [Dreossi, Donze, Seshia, NFM 2017; J. Automated Reasoning 2019] 3g
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Revisiting the Challenges
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Challenge 1: Hard to Formalize Tasks

Many of the impactful applications of ML/Deep Learning are in Perceptual Tasks

How do you specify “a car”?

What Specifications are Meaningful for Hard-to-Formalize Tasks?

Principle: Start with Formalizable System-Level Specification

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016.
https://arxiv.org/abs/1606.08514.

S. A. Seshia



Challenge 2: Boolean vs. Quantitative Specifications

Do you speak
Machine Learning?
(cost functions, risk
reward, etc.)

Do you speak
Formal Methods?
(logic, automata,
etc.)

BOOLEAN QUANTITATIVE

\  More Flexible
* More Composable ¢ Flt Wlth Opt|m|zat|0n

* Fit with Formal Tools HYBRID

Principle: Employ Hybrid Boolean-Quantitative Formalisms

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016. Eg, MTL' STL, Rulebooks, etc.

https://arxiv.org/abs/1606.08514.
S. A. Seshia 41



Challenge 3: Data vs. Formal Specification

MACHINE LEARNING FORMAL METHODS

®; V (P, A @3)

How do we bridge the gap?

Principle: Use Specification Mining

E.g., [Vazquez-Chanlatte et al. ‘17, “18;

o . {
S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016. Puranic et al., 21; Belta etal., 17, ...]
https://arxiv.org/abs/1606.08514.

S. A. Seshia 42
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Specifying Environments / Distributional Assumptions
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SCENIC: Environment Modeling and Data Generation

« Scenic is a probabilistic programming language defining distributions over scenes/scenarios
« Use cases: data generation, test generation, verification, debugging, design exploration, etc.

model scenic.domains.driving.model

model scenic.domains.driving.model
behavior PullIntoRoad():

ego = Car while (distance from self to ego) > 15:
wait

spot = OrientedPoint on visible curb FollowLaneBehavior(lane=ego. lane)

badAngle = Uniform(1.0, -1.0) * Range(1@0, 20) deg _ _ _ o o

parkedCar = Car left of spot by 0.5, ego = Car with behavior DriveAvoidingCollisions

facin Angle relative to roadDirection
g badAngle oad €ct1o spot = OrientedPoint on visible curb

badAngle = Uniform(1.0, -1.0) * Range(10, 20) deg
DCINICHEE A EI CleREI@l |parkedcar = Car left of spot by 8.5,
facing badAngle relative to roadDirection,

with behavior PullIntoRoad

Image

Video
created
. created
with with
GTA-V & CARLA

/A m
I’

[D. Fremont et al., “Scenic: A Language for Scenario Specification and Scene Generation”, TR 218, PLDI 2019.]
S. A. Seshia 44



VERIFAI: A Toolkit for the Design and Analysis of Al-Based

SyStemS [CAV 2019] https://github.com/BerkeleylLearnVerify/VerifAl
Fuzz Testing
System  w=—mp Simulator VERIFICATION
‘ Falsification
Semantic
Environment —_— Feature <—| Monitor =P Failure Analysis DEBUGGING
(Scenic pgm) Space ‘
Data Augmentation/ Retraining
Specification) mp Analysis Parameter SYNTHESIS
Multi-modal: temporal Synthesis

logic, obj funcs, ...

>
\,é."’,{
3 3

AUTONOMOUS DRIVING [ AIRCRAFT

ROBOTICS |

45


https://github.com/BerkeleyLearnVerify/VerifAI

Conclusion: Towards Verified Al/ML based Autonomy

S. A. Seshia

Challenges Principles

1. Environment (incl. —— Data-Driven, Introspective, Probabilistic
Human) Modeling Modeling

2. Specification — Start with System-Level Spec; Hybrid

Boolean-Quant; Spec. Mining

3. Learning Systems Abstraction, Semantic Representation,
Complexity — and Explanations

4. Efficient Training, __, Compositional Analysis and Semantics-
Testing, Verification directed Search/Training

5. Design for Correctness — Oracle-Guided Inductive Synthesis;

Run-Time Assurance

Exciting Times Ahead!!! Thank you!

S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. July 2016.
https://arxiv.org/abs/1606.08514.
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